ATFLRec: A Multimodal Recommender System with Audio-Text Fusion and Low-Rank Adaptation via Instruction-Tuned Large Language Model

Zezheng Qin
{"title":"ATFLRec: A Multimodal Recommender System with Audio-Text Fusion and Low-Rank Adaptation via Instruction-Tuned Large Language Model","authors":"Zezheng Qin","doi":"arxiv-2409.08543","DOIUrl":null,"url":null,"abstract":"Recommender Systems (RS) play a pivotal role in boosting user satisfaction by\nproviding personalized product suggestions in domains such as e-commerce and\nentertainment. This study examines the integration of multimodal data text and\naudio into large language models (LLMs) with the aim of enhancing\nrecommendation performance. Traditional text and audio recommenders encounter\nlimitations such as the cold-start problem, and recent advancements in LLMs,\nwhile promising, are computationally expensive. To address these issues,\nLow-Rank Adaptation (LoRA) is introduced, which enhances efficiency without\ncompromising performance. The ATFLRec framework is proposed to integrate audio\nand text modalities into a multimodal recommendation system, utilizing various\nLoRA configurations and modality fusion techniques. Results indicate that\nATFLRec outperforms baseline models, including traditional and graph neural\nnetwork-based approaches, achieving higher AUC scores. Furthermore, separate\nfine-tuning of audio and text data with distinct LoRA modules yields optimal\nperformance, with different pooling methods and Mel filter bank numbers\nsignificantly impacting performance. This research offers valuable insights\ninto optimizing multimodal recommender systems and advancing the integration of\ndiverse data modalities in LLMs.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recommender Systems (RS) play a pivotal role in boosting user satisfaction by providing personalized product suggestions in domains such as e-commerce and entertainment. This study examines the integration of multimodal data text and audio into large language models (LLMs) with the aim of enhancing recommendation performance. Traditional text and audio recommenders encounter limitations such as the cold-start problem, and recent advancements in LLMs, while promising, are computationally expensive. To address these issues, Low-Rank Adaptation (LoRA) is introduced, which enhances efficiency without compromising performance. The ATFLRec framework is proposed to integrate audio and text modalities into a multimodal recommendation system, utilizing various LoRA configurations and modality fusion techniques. Results indicate that ATFLRec outperforms baseline models, including traditional and graph neural network-based approaches, achieving higher AUC scores. Furthermore, separate fine-tuning of audio and text data with distinct LoRA modules yields optimal performance, with different pooling methods and Mel filter bank numbers significantly impacting performance. This research offers valuable insights into optimizing multimodal recommender systems and advancing the integration of diverse data modalities in LLMs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ATFLRec:通过指令调谐大语言模型实现音频-文本融合和低级别自适应的多模态推荐系统
推荐系统(RS)通过在电子商务和娱乐等领域提供个性化产品建议,在提高用户满意度方面发挥着举足轻重的作用。本研究探讨了如何将多模态数据文本和音频整合到大型语言模型(LLM)中,以提高推荐性能。传统的文本和音频推荐器存在冷启动问题等局限性,而最近在 LLMs 方面取得的进展虽然前景广阔,但计算成本高昂。为了解决这些问题,我们引入了低库自适应(Low-Rank Adaptation,LoRA)技术,它既能提高效率,又不会降低性能。我们提出了 ATFLRec 框架,利用各种 LoRA 配置和模态融合技术将音频和文本模态整合到多模态推荐系统中。结果表明,ATFLRec 优于基线模型,包括传统方法和基于图神经网络的方法,获得了更高的 AUC 分数。此外,使用不同的 LoRA 模块对音频和文本数据进行单独微调可获得最佳性能,不同的池化方法和梅尔滤波器组数量对性能有显著影响。这项研究为优化多模态推荐系统和推进 LLM 中多种数据模态的整合提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1