Interpenetrating networks of fibrillar and amorphous collagen promote cell spreading and hydrogel stability

Lucia G. Brunel, Chris M. Long, Fotis Christakopoulos, Betty Cai, Patrik K. Johansson, Diya Singhal, Annika Enejder, David Myung, Sarah C Heilshorn
{"title":"Interpenetrating networks of fibrillar and amorphous collagen promote cell spreading and hydrogel stability","authors":"Lucia G. Brunel, Chris M. Long, Fotis Christakopoulos, Betty Cai, Patrik K. Johansson, Diya Singhal, Annika Enejder, David Myung, Sarah C Heilshorn","doi":"10.1101/2024.09.11.612534","DOIUrl":null,"url":null,"abstract":"Hydrogels composed of collagen, the most abundant protein in the human body, are widely used as scaffolds for tissue engineering due to their ability to support cellular activity. However, collagen hydrogels with encapsulated cells often experience bulk contraction due to cell-generated forces, and conventional strategies to mitigate this undesired deformation often compromise either the fibrillar microstructure or cytocompatibility of the collagen. To support the spreading of encapsulated cells while preserving the structural integrity of the gels, we present an interpenetrating network (IPN) of two distinct collagen networks with different crosslinking mechanisms and microstructures. First, a physically self-assembled collagen network preserves the fibrillar microstructure and enables the spreading of encapsulated human corneal mesenchymal stromal cells. Second, an amorphous collagen network covalently crosslinked with bioorthogonal chemistry fills the voids between fibrils and stabilizes the gel against cell-induced contraction. This collagen IPN balances the biofunctionality of natural collagen with the stability of covalently crosslinked, engineered polymers. Taken together, these data represent a new avenue for maintaining both the fiber-induced spreading of cells and the structural integrity of collagen hydrogels by leveraging an IPN of fibrillar and amorphous collagen networks.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.11.612534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogels composed of collagen, the most abundant protein in the human body, are widely used as scaffolds for tissue engineering due to their ability to support cellular activity. However, collagen hydrogels with encapsulated cells often experience bulk contraction due to cell-generated forces, and conventional strategies to mitigate this undesired deformation often compromise either the fibrillar microstructure or cytocompatibility of the collagen. To support the spreading of encapsulated cells while preserving the structural integrity of the gels, we present an interpenetrating network (IPN) of two distinct collagen networks with different crosslinking mechanisms and microstructures. First, a physically self-assembled collagen network preserves the fibrillar microstructure and enables the spreading of encapsulated human corneal mesenchymal stromal cells. Second, an amorphous collagen network covalently crosslinked with bioorthogonal chemistry fills the voids between fibrils and stabilizes the gel against cell-induced contraction. This collagen IPN balances the biofunctionality of natural collagen with the stability of covalently crosslinked, engineered polymers. Taken together, these data represent a new avenue for maintaining both the fiber-induced spreading of cells and the structural integrity of collagen hydrogels by leveraging an IPN of fibrillar and amorphous collagen networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纤维状胶原蛋白和无定形胶原蛋白的相互渗透网络促进了细胞扩散和水凝胶的稳定性
胶原蛋白是人体内含量最高的蛋白质,由胶原蛋白组成的水凝胶因其支持细胞活动的能力而被广泛用作组织工程支架。然而,包裹细胞的胶原蛋白水凝胶往往会因细胞产生的作用力而发生体积收缩,而缓解这种不良变形的传统策略往往会损害胶原蛋白的纤维微结构或细胞相容性。为了在保持凝胶结构完整性的同时支持包裹细胞的扩散,我们提出了一种由两种具有不同交联机制和微结构的胶原蛋白网络组成的互穿网络(IPN)。首先,物理自组装胶原蛋白网络保留了纤维状的微观结构,并使包裹的人角膜间充质基质细胞得以扩散。其次,用生物正交化学共价交联的无定形胶原蛋白网络填充了纤维之间的空隙,使凝胶稳定,防止细胞诱导的收缩。这种胶原蛋白 IPN 平衡了天然胶原蛋白的生物功能性和共价交联工程聚合物的稳定性。综合来看,这些数据代表了一种新的途径,即利用纤维状和无定形胶原蛋白网络的 IPN 来维持纤维诱导的细胞扩散和胶原蛋白水凝胶的结构完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single unit electrophysiology recordings and computational modeling can predict octopus arm movement PiggyBac mediated transgenesis and CRISPR/Cas9 knockout in the greater waxmoth, Galleria mellonella A microinjection protocol for the greater waxworm moth, Galleria mellonella Engineered Receptors for Soluble Cell-to-Cell Communication Synthesis and mechanical characterization of polyacrylamide (PAAm) hydrogels with different stiffnesses for large-batch cell culture applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1