Jairo Lumpuy-Castillo, Yujie Fu, Alan Avila, Kateryna Solodka, Jiantong Li, Oscar Lorenzo, Erica Zeglio, Leonardo Daniel Garma
{"title":"Inkjet-printed graphene multielectrode arrays: an accessible platform for in vitro cardiac electrophysiology","authors":"Jairo Lumpuy-Castillo, Yujie Fu, Alan Avila, Kateryna Solodka, Jiantong Li, Oscar Lorenzo, Erica Zeglio, Leonardo Daniel Garma","doi":"10.1101/2024.09.09.611887","DOIUrl":null,"url":null,"abstract":"In vitro models have now become a realistic alternative to animal models for cardiotoxicity assessment. However, the cost and expertise required to implement in vitro electrophysiology systems to study cardiac cells poses a strong obstacle to their widespread use. This study presents a novel, cost-effective approach for in vitro cardiac electrophysiology using fully-printed graphene-based microelectrode arrays (pGMEAs) coupled with an open-source signal acquisition system. We characterized the pGMEAs' electrical properties and biocompatibility, observing low impedance values and cell viability. We demonstrated the platform's capability to record spontaneous electrophysiological activity from HL-1 cell cultures, and we monitored and quantified their responses to chemical stimulation with noradrenaline. This study demonstrates the feasibility of producing fully-printed, graphene-based devices for in vitro electrophysiology. The accessible and versatile platform we present here represents a step further in the development of alternative methods for cardiac safety screening.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.09.611887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In vitro models have now become a realistic alternative to animal models for cardiotoxicity assessment. However, the cost and expertise required to implement in vitro electrophysiology systems to study cardiac cells poses a strong obstacle to their widespread use. This study presents a novel, cost-effective approach for in vitro cardiac electrophysiology using fully-printed graphene-based microelectrode arrays (pGMEAs) coupled with an open-source signal acquisition system. We characterized the pGMEAs' electrical properties and biocompatibility, observing low impedance values and cell viability. We demonstrated the platform's capability to record spontaneous electrophysiological activity from HL-1 cell cultures, and we monitored and quantified their responses to chemical stimulation with noradrenaline. This study demonstrates the feasibility of producing fully-printed, graphene-based devices for in vitro electrophysiology. The accessible and versatile platform we present here represents a step further in the development of alternative methods for cardiac safety screening.