Lu Wang, Guoshuai Liu, Qifang Lu, Hua Zou, Shijie You
{"title":"Reductive Degradation of Florfenicol by Electrogenerated Hydrated Electrons via the Electron Tunneling Effect","authors":"Lu Wang, Guoshuai Liu, Qifang Lu, Hua Zou, Shijie You","doi":"10.1021/acsestengg.4c00326","DOIUrl":null,"url":null,"abstract":"Degradation of fluorinated organic pollutants remains a challenge due to the strong electronegativity of fluorine and the high structural stability of C–F bonds. Advanced reduction processes (ARPs) based on strong reducibility of hydrated electrons (e<sub>aq</sub><sup>–</sup>) are effective for destroying recalcitrant fluorinated organic pollutants. Ultraviolet (UV) photolysis is a frequently used method for producing e<sub>aq</sub><sup>–</sup>, but it is limited by the need for chemical addition and light-shielding effects. This study reported the generation of e<sub>aq</sub><sup>–</sup> via electron tunneling based on the n<sup>+</sup>Si/Al<sub>2</sub>O<sub>3</sub> cathode with a metal–insulator-semiconductor (MIS) structure for the rapid reductive degradation of a halogenated emerging pollutant (florfenicol, FLO). The results demonstrate that the n<sup>+</sup>Si/Al<sub>2</sub>O<sub>3</sub> cathode achieved 97.5% degradation (30 min), accounting for 92.3% defluorination and 97.0% dechlorination (120 min). The electrogenerated e<sub>aq</sub><sup>–</sup> was responsible for the degradation and dehalogenation of FLO, as indicated by electron spin resonance (ESR) measurements, scavenger experiments, and electrochemiluminescence (ECL) tests. The theoretical calculations revealed the occurrence of electron tunneling on the thin Al<sub>2</sub>O<sub>3</sub> film at the n<sup>+</sup>Si/Al<sub>2</sub>O<sub>3</sub> cathode, where the tunneling electron jumped to the water to form e<sub>aq</sub><sup>–</sup>. The ARPs based on electrogenerated e<sub>aq</sub><sup>–</sup> also demonstrated efficient degradation of chloramphenicol (CAP), hydroxychloroquine (HCQ), and levofloxacin (LVF). This study not only provides a simple approach to e<sub>aq</sub><sup>–</sup> generation via the electron tunneling effect but also suggests a possible strategy for developing ARPs to remove halogenated emerging organic pollutants in water.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"4 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsestengg.4c00326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Degradation of fluorinated organic pollutants remains a challenge due to the strong electronegativity of fluorine and the high structural stability of C–F bonds. Advanced reduction processes (ARPs) based on strong reducibility of hydrated electrons (eaq–) are effective for destroying recalcitrant fluorinated organic pollutants. Ultraviolet (UV) photolysis is a frequently used method for producing eaq–, but it is limited by the need for chemical addition and light-shielding effects. This study reported the generation of eaq– via electron tunneling based on the n+Si/Al2O3 cathode with a metal–insulator-semiconductor (MIS) structure for the rapid reductive degradation of a halogenated emerging pollutant (florfenicol, FLO). The results demonstrate that the n+Si/Al2O3 cathode achieved 97.5% degradation (30 min), accounting for 92.3% defluorination and 97.0% dechlorination (120 min). The electrogenerated eaq– was responsible for the degradation and dehalogenation of FLO, as indicated by electron spin resonance (ESR) measurements, scavenger experiments, and electrochemiluminescence (ECL) tests. The theoretical calculations revealed the occurrence of electron tunneling on the thin Al2O3 film at the n+Si/Al2O3 cathode, where the tunneling electron jumped to the water to form eaq–. The ARPs based on electrogenerated eaq– also demonstrated efficient degradation of chloramphenicol (CAP), hydroxychloroquine (HCQ), and levofloxacin (LVF). This study not only provides a simple approach to eaq– generation via the electron tunneling effect but also suggests a possible strategy for developing ARPs to remove halogenated emerging organic pollutants in water.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.