Shunan Zhao, Yunong Dai, Ruikang Wang, Qianli Guo, Ge Song, Liuying Song, Jiyong Bian, Kai Zhao*, Ruiping Liu and Yu-You Li,
{"title":"Broad Influence of Quorum Sensing in Environmental Biotechnology: From Mechanisms to Applications","authors":"Shunan Zhao, Yunong Dai, Ruikang Wang, Qianli Guo, Ge Song, Liuying Song, Jiyong Bian, Kai Zhao*, Ruiping Liu and Yu-You Li, ","doi":"10.1021/acsestengg.4c0065710.1021/acsestengg.4c00657","DOIUrl":null,"url":null,"abstract":"<p >Quorum sensing (QS), a pivotal cell-to-cell communication mechanism in microbial communities, plays a significant role in regulating microbial behaviors such as biofilm formation and sludge granulation, which are critical for the efficiency of wastewater treatment systems. This review provides thorough insight into the QS pathway modulation, focusing on the utilization of signaling molecules, particularly N-acyl homoserine lactones (AHLs), to augment microbial aggregation and extracellular polymeric substance synthesis within wastewater biotreatment system. The strategic addition of exogenous AHLs has been demonstrated to significantly accelerate the granulation process in aerobic and anaerobic sludge, leading to the development of more stable and compact granules with enhanced settling velocity and nutrient removal efficiency. Furthermore, the QS pathway significantly impacts microbial community structure and function, with diverse signaling molecules forming a complex regulatory network that can be leveraged to improve the performance of biotechnological processes. In addition to enhancing the advantageous attributes of biofilms, researchers have also immersed themselves in the exploration of quorum quenching (QQ) strategies. These strategies are adeptly applied to disrupt QS pathways, thereby effectively managing membrane fouling within membrane bioreactors (MBRs). By employing QQ enzymes, synthetic analogs, and QQ bacterial strains, researchers present effective approaches to mitigate biofilm-related issues without adversely affecting the microbial treatment processes. The innovative use of immobilized QQ enzymes and the integration of QQ strains into the MBRs have shown promising results in reducing fouling and maintaining operational stability. This review highlights the dual potential of QS manipulation for both enhancing desirable microbial process and controlling detrimental ones. By providing a deeper understanding of the underlying mechanisms and practical applications for QS/QQ pathway, scholars would be expected to develop more efficient and sustainable environmental biotechnology solutions for wastewater treatment and beyond.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 2","pages":"284–302 284–302"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quorum sensing (QS), a pivotal cell-to-cell communication mechanism in microbial communities, plays a significant role in regulating microbial behaviors such as biofilm formation and sludge granulation, which are critical for the efficiency of wastewater treatment systems. This review provides thorough insight into the QS pathway modulation, focusing on the utilization of signaling molecules, particularly N-acyl homoserine lactones (AHLs), to augment microbial aggregation and extracellular polymeric substance synthesis within wastewater biotreatment system. The strategic addition of exogenous AHLs has been demonstrated to significantly accelerate the granulation process in aerobic and anaerobic sludge, leading to the development of more stable and compact granules with enhanced settling velocity and nutrient removal efficiency. Furthermore, the QS pathway significantly impacts microbial community structure and function, with diverse signaling molecules forming a complex regulatory network that can be leveraged to improve the performance of biotechnological processes. In addition to enhancing the advantageous attributes of biofilms, researchers have also immersed themselves in the exploration of quorum quenching (QQ) strategies. These strategies are adeptly applied to disrupt QS pathways, thereby effectively managing membrane fouling within membrane bioreactors (MBRs). By employing QQ enzymes, synthetic analogs, and QQ bacterial strains, researchers present effective approaches to mitigate biofilm-related issues without adversely affecting the microbial treatment processes. The innovative use of immobilized QQ enzymes and the integration of QQ strains into the MBRs have shown promising results in reducing fouling and maintaining operational stability. This review highlights the dual potential of QS manipulation for both enhancing desirable microbial process and controlling detrimental ones. By providing a deeper understanding of the underlying mechanisms and practical applications for QS/QQ pathway, scholars would be expected to develop more efficient and sustainable environmental biotechnology solutions for wastewater treatment and beyond.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.