{"title":"Machine learning approaches for predicting and validating mechanical properties of Mg rare earth alloys for light weight applications.","authors":"Sandeep Jain, Ayan Bhowmik, Jaichan Lee","doi":"10.1080/14686996.2025.2449811","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we have attempted to predict the mechanical behaviour of light weight Mg-based rare earth alloys fabricated through different mechanical and thermal processes. Our approach involves machine learning techniques across a range of different thermomechanical processes such as solution treatment, homogenization, extrusion and aging behaviour. The effectiveness of machine learning models is evaluated using performance metrics, including Coefficient of determination (R<sup>2</sup>), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). After modeling and selection of best model, the mechanical behaviour of new alloys was predicted in terms of ultimate tensile strength, yield strength and total elongation. The predicted results highlight the superior predictive accuracy of the K-Nearest Neighbors (KNN) machine learning model, demonstrating its better performance metrics compared with other machine learning approaches. This model has been found to predict the material properties with an effective evaluation matrix (R<sup>2</sup> = 0.955, MAE = 3.4% and RMSE = 4.5%).</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2449811"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792136/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2025.2449811","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we have attempted to predict the mechanical behaviour of light weight Mg-based rare earth alloys fabricated through different mechanical and thermal processes. Our approach involves machine learning techniques across a range of different thermomechanical processes such as solution treatment, homogenization, extrusion and aging behaviour. The effectiveness of machine learning models is evaluated using performance metrics, including Coefficient of determination (R2), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). After modeling and selection of best model, the mechanical behaviour of new alloys was predicted in terms of ultimate tensile strength, yield strength and total elongation. The predicted results highlight the superior predictive accuracy of the K-Nearest Neighbors (KNN) machine learning model, demonstrating its better performance metrics compared with other machine learning approaches. This model has been found to predict the material properties with an effective evaluation matrix (R2 = 0.955, MAE = 3.4% and RMSE = 4.5%).
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.