{"title":"Visualization of spatial inhomogeneity in the superconducting gap using micro-ARPES","authors":"Yudai Miyai, Shigeyuki Ishida, Kenichi Ozawa, Yoshiyuki Yoshida, Hiroshi Eisaki, Kenya Shimada, Hideaki Iwasawa","doi":"10.1080/14686996.2024.2379238","DOIUrl":null,"url":null,"abstract":"Electronic inhomogeneity arises ubiquitously as a consequence of adjacent and/or competing multiple phases or orders in strongly correlated electron systems. Gap inhomogeneity in high-<span><img alt=\"\" data-formula-source='{\"type\":\"image\",\"src\":\"/cms/asset/23348068-a604-405d-a0ca-e3a990eb8f15/tsta_a_2379238_ilm0001.gif\"}' src=\"//:0\"/></span><span><span style=\"color: inherit; display: none;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"italic\">Tc</mi></mrow></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 1.206em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.014em; height: 0px; font-size: 118%;\"><span style=\"position: absolute; clip: rect(1.543em, 1001.01em, 2.506em, -999.998em); top: -2.357em; left: 0em;\"><span><span><span style=\"font-family: MathJax_Math-italic;\">T<span style=\"font-family: MathJax_Math-italic;\">c</span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.362em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"italic\">Tc</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow><mi mathvariant=\"italic\">Tc</mi></mrow></math></script></span> cuprate superconductors has been widely observed using scanning tunneling microscopy/spectroscopy. However, it has yet to be evaluated by angle-resolved photoemission spectroscopy (ARPES) due to the difficulty in achieving both high energy and spatial resolutions. Here, we employ high-resolution spatially-resolved ARPES with a micrometric beam (micro-ARPES) to reveal the spatial dependence of the antinodal electronic states in optimally-doped Bi<span><img alt=\"\" data-formula-source='{\"type\":\"image\",\"src\":\"/cms/asset/a0f62796-003e-4ca4-bc8a-7da638fce1e4/tsta_a_2379238_ilm0002.gif\"}' src=\"//:0\"/></span><span><span style=\"color: inherit; display: none;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn></mrow></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 0.58em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 0.484em; height: 0px; font-size: 118%;\"><span style=\"position: absolute; clip: rect(1.543em, 1000.44em, 2.506em, -999.998em); top: -2.357em; left: 0em;\"><span><span><span style=\"font-family: MathJax_Main;\">2</span></span></span><span style=\"display: inline-block; width: 0px; height: 2.362em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn></mrow></math></span></span><script type=\"math/mml\"><math><mrow><mn>2</mn></mrow></math></script></span>Sr<span><img alt=\"\" data-formula-source='{\"type\":\"image\",\"src\":\"/cms/asset/313e6073-4d1d-46ff-b9cf-e9fd40c90a91/tsta_a_2379238_ilm0003.gif\"}' src=\"//:0\"/></span><span><span style=\"color: inherit; display: none;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn></mrow></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 0.58em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 0.484em; height: 0px; font-size: 118%;\"><span style=\"position: absolute; clip: rect(1.543em, 1000.44em, 2.506em, -999.998em); top: -2.357em; left: 0em;\"><span><span><span style=\"font-family: MathJax_Main;\">2</span></span></span><span style=\"display: inline-block; width: 0px; height: 2.362em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn></mrow></math></span></span><script type=\"math/mml\"><math><mrow><mn>2</mn></mrow></math></script></span>CaCu<span><img alt=\"\" data-formula-source='{\"type\":\"image\",\"src\":\"/cms/asset/3a29c068-90b3-452f-adf0-e790821bab83/tsta_a_2379238_ilm0004.gif\"}' src=\"//:0\"/></span><span><span style=\"color: inherit; display: none;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn></mrow></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 0.58em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 0.484em; height: 0px; font-size: 118%;\"><span style=\"position: absolute; clip: rect(1.543em, 1000.44em, 2.506em, -999.998em); top: -2.357em; left: 0em;\"><span><span><span style=\"font-family: MathJax_Main;\">2</span></span></span><span style=\"display: inline-block; width: 0px; height: 2.362em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.054em; border-left: 0px solid; width: 0px; height: 0.912em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>2</mn></mrow></math></span></span><script type=\"math/mml\"><math><mrow><mn>2</mn></mrow></math></script></span>O<span><img alt=\"\" data-formula-source='{\"type\":\"image\",\"src\":\"/cms/asset/63499a7c-13d6-4d30-87d5-8e8ef7e0c5f3/tsta_a_2379238_ilm0005.gif\"}' src=\"//:0\"/></span><span><span style=\"color: inherit; display: none;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mn>8</mn><mo>+</mo><mi mathvariant=\"italic\">&#x3B4;</mi></mrow></mrow></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 2.651em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 2.217em; height: 0px; font-size: 118%;\"><span style=\"position: absolute; clip: rect(1.495em, 1002.22em, 2.603em, -999.998em); top: -2.357em; left: 0em;\"><span><span><span><span style=\"font-family: MathJax_Main;\">8</span><span style=\"font-family: MathJax_Main; padding-left: 0.243em;\">+</span><span style=\"font-family: MathJax_Math-italic; padding-left: 0.243em;\">δ<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.002em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.362em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.168em; border-left: 0px solid; width: 0px; height: 1.082em;\"></span></span></nobr><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mn>8</mn><mo>+</mo><mi mathvariant=\"italic\">δ</mi></mrow></mrow></math></span></span><script type=\"math/mml\"><math><mrow><mrow><mn>8</mn><mo>+</mo><mi mathvariant=\"italic\">δ</mi></mrow></mrow></math></script></span>. Detailed spectral lineshape analysis was extended to the spatial mapping dataset, enabling the identification of the spatial inhomogeneity of the superconducting gap and single-particle scattering rate at the micro-scale. Moreover, these physical parameters and their correlations were statistically evaluated. Our results suggest that high-resolution spatially-resolved ARPES holds promise for facilitating a data-driven approach to unraveling complexity and uncovering key parameters for the formulation of various physical properties of materials.","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"19 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2379238","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electronic inhomogeneity arises ubiquitously as a consequence of adjacent and/or competing multiple phases or orders in strongly correlated electron systems. Gap inhomogeneity in high-Tc cuprate superconductors has been widely observed using scanning tunneling microscopy/spectroscopy. However, it has yet to be evaluated by angle-resolved photoemission spectroscopy (ARPES) due to the difficulty in achieving both high energy and spatial resolutions. Here, we employ high-resolution spatially-resolved ARPES with a micrometric beam (micro-ARPES) to reveal the spatial dependence of the antinodal electronic states in optimally-doped Bi2Sr2CaCu2O8+δ. Detailed spectral lineshape analysis was extended to the spatial mapping dataset, enabling the identification of the spatial inhomogeneity of the superconducting gap and single-particle scattering rate at the micro-scale. Moreover, these physical parameters and their correlations were statistically evaluated. Our results suggest that high-resolution spatially-resolved ARPES holds promise for facilitating a data-driven approach to unraveling complexity and uncovering key parameters for the formulation of various physical properties of materials.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.