Decentralized Safe and Scalable Multi-Agent Control under Limited Actuation

Vrushabh Zinage, Abhishek Jha, Rohan Chandra, Efstathios Bakolas
{"title":"Decentralized Safe and Scalable Multi-Agent Control under Limited Actuation","authors":"Vrushabh Zinage, Abhishek Jha, Rohan Chandra, Efstathios Bakolas","doi":"arxiv-2409.09573","DOIUrl":null,"url":null,"abstract":"To deploy safe and agile robots in cluttered environments, there is a need to\ndevelop fully decentralized controllers that guarantee safety, respect\nactuation limits, prevent deadlocks, and scale to thousands of agents. Current\napproaches fall short of meeting all these goals: optimization-based methods\nensure safety but lack scalability, while learning-based methods scale but do\nnot guarantee safety. We propose a novel algorithm to achieve safe and scalable\ncontrol for multiple agents under limited actuation. Specifically, our approach\nincludes: $(i)$ learning a decentralized neural Integral Control Barrier\nfunction (neural ICBF) for scalable, input-constrained control, $(ii)$\nembedding a lightweight decentralized Model Predictive Control-based Integral\nControl Barrier Function (MPC-ICBF) into the neural network policy to ensure\nsafety while maintaining scalability, and $(iii)$ introducing a novel method to\nminimize deadlocks based on gradient-based optimization techniques from machine\nlearning to address local minima in deadlocks. Our numerical simulations show\nthat this approach outperforms state-of-the-art multi-agent control algorithms\nin terms of safety, input constraint satisfaction, and minimizing deadlocks.\nAdditionally, we demonstrate strong generalization across scenarios with\nvarying agent counts, scaling up to 1000 agents.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To deploy safe and agile robots in cluttered environments, there is a need to develop fully decentralized controllers that guarantee safety, respect actuation limits, prevent deadlocks, and scale to thousands of agents. Current approaches fall short of meeting all these goals: optimization-based methods ensure safety but lack scalability, while learning-based methods scale but do not guarantee safety. We propose a novel algorithm to achieve safe and scalable control for multiple agents under limited actuation. Specifically, our approach includes: $(i)$ learning a decentralized neural Integral Control Barrier function (neural ICBF) for scalable, input-constrained control, $(ii)$ embedding a lightweight decentralized Model Predictive Control-based Integral Control Barrier Function (MPC-ICBF) into the neural network policy to ensure safety while maintaining scalability, and $(iii)$ introducing a novel method to minimize deadlocks based on gradient-based optimization techniques from machine learning to address local minima in deadlocks. Our numerical simulations show that this approach outperforms state-of-the-art multi-agent control algorithms in terms of safety, input constraint satisfaction, and minimizing deadlocks. Additionally, we demonstrate strong generalization across scenarios with varying agent counts, scaling up to 1000 agents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有限致动下的分散式安全可扩展多代理控制
为了在杂乱的环境中部署安全而灵活的机器人,需要开发完全分散的控制器,以保证安全性、尊重作用极限、防止死锁并扩展到数千个代理。目前的方法无法满足所有这些目标:基于优化的方法能保证安全性,但缺乏可扩展性,而基于学习的方法虽能扩展,但无法保证安全性。我们提出了一种新颖的算法,在有限的驱动力下实现对多个代理的安全和可扩展控制。具体来说,我们的方法包括(i)$学习分散式神经积分控制障碍函数(neural ICBF),实现可扩展的输入受限控制;(ii)$在神经网络策略中嵌入轻量级分散式基于模型预测控制的积分控制障碍函数(MPC-ICBF),确保安全的同时保持可扩展性;(iii)$引入一种新方法,基于机器学习中的梯度优化技术,最大限度地减少死锁,解决死锁中的局部极小值问题。我们的数值模拟表明,这种方法在安全性、输入约束满足度和死锁最小化方面都优于最先进的多代理控制算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1