Bio-Inspired Screwed Conduits from the Microfluidic Rope-Coiling Effect for Microvessels and Bronchioles

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Pub Date : 2024-10-01 DOI:10.1016/j.eng.2022.09.018
Rui Liu , Jiahui Guo , Bin Kong , Yunru Yu , Yuanjin Zhao , Lingyun Sun
{"title":"Bio-Inspired Screwed Conduits from the Microfluidic Rope-Coiling Effect for Microvessels and Bronchioles","authors":"Rui Liu ,&nbsp;Jiahui Guo ,&nbsp;Bin Kong ,&nbsp;Yunru Yu ,&nbsp;Yuanjin Zhao ,&nbsp;Lingyun Sun","doi":"10.1016/j.eng.2022.09.018","DOIUrl":null,"url":null,"abstract":"<div><div>Tubular microfibers have recently attracted extensive interest for applications in tissue engineering. However, the fabrication of tubular fibers with intricate hierarchical structures remains a major challenge. Here, we present a novel one-step microfluidic spinning method to generate bio-inspired screwed conduits (BSCs). Based on the microfluidic rope-coiling effect, a viscous hydrogel precursor is first curved into a helix stream in the channel, and then consecutively packed as a hollow structured stream and gelated into a screwed conduit (SC) via ionic and covalent crosslinking. By taking advantage of the excellent fluid-controlling ability of microfluidics, various tubes with diverse structures are fabricated via simple control over fluid velocities and multiple microfluidic device designs. The perfusability and permeability results, as well as the encapsulation and culture of human umbilical vein endothelial cells (HUVECs), human pulmonary alveolar epithelial cells (HPAs), and myogenic cells (C2C12), demonstrate that these SCs have good perfusability and permeability and the ability to induce the formation of functional biostructures. These features support the uniqueness and potential applications of these BSCs as biomimetic blood vessels and bronchiole tissues in combination with tissue microstructures, with likely application possibilities in biomedical engineering.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"41 ","pages":"Pages 172-178"},"PeriodicalIF":10.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924003680","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tubular microfibers have recently attracted extensive interest for applications in tissue engineering. However, the fabrication of tubular fibers with intricate hierarchical structures remains a major challenge. Here, we present a novel one-step microfluidic spinning method to generate bio-inspired screwed conduits (BSCs). Based on the microfluidic rope-coiling effect, a viscous hydrogel precursor is first curved into a helix stream in the channel, and then consecutively packed as a hollow structured stream and gelated into a screwed conduit (SC) via ionic and covalent crosslinking. By taking advantage of the excellent fluid-controlling ability of microfluidics, various tubes with diverse structures are fabricated via simple control over fluid velocities and multiple microfluidic device designs. The perfusability and permeability results, as well as the encapsulation and culture of human umbilical vein endothelial cells (HUVECs), human pulmonary alveolar epithelial cells (HPAs), and myogenic cells (C2C12), demonstrate that these SCs have good perfusability and permeability and the ability to induce the formation of functional biostructures. These features support the uniqueness and potential applications of these BSCs as biomimetic blood vessels and bronchiole tissues in combination with tissue microstructures, with likely application possibilities in biomedical engineering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于微血管和支气管的微流体绳索-卷绕效应的生物螺纹导管
最近,管状微纤维在组织工程中的应用引起了广泛关注。然而,制造具有复杂分层结构的管状纤维仍然是一项重大挑战。在这里,我们提出了一种新颖的一步法微流体纺丝方法来生成生物启发螺旋导管(BSC)。基于微流体的卷绳效应,粘性水凝胶前体首先在通道中弯曲成螺旋流,然后连续包装成空心结构流,并通过离子和共价交联凝胶化成螺旋导管(SC)。利用微流体技术出色的流体控制能力,通过对流体速度的简单控制和多种微流体装置设计,可以制造出各种不同结构的管道。灌注性和渗透性结果以及人脐静脉内皮细胞(HUVECs)、人肺泡上皮细胞(HPAs)和肌源细胞(C2C12)的封装和培养结果表明,这些 SCs 具有良好的灌注性和渗透性,并能诱导形成功能性生物结构。这些特点支持了这些 BSCs 作为生物仿真血管和支气管组织的独特性和潜在应用,并与组织微结构相结合,有可能应用于生物医学工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
期刊最新文献
Digital Twins for Engineering Asset Management: Synthesis, Analytical Framework, and Future Directions Understanding the Resilience of Urban Rail Transit: Concepts, Reviews, and Trends Direct Ethylene Purification from Cracking Gas via a Metal–Organic Framework Through Pore Geometry Fitting Utilization of Bubbles and Oil for Microplastic Capture from Water Robust, Flexible, and Superhydrophobic Fabrics for High-Efficiency and Ultrawide-Band Microwave Absorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1