On the limits of agency in agent-based models

Ayush Chopra, Shashank Kumar, Nurullah Giray-Kuru, Ramesh Raskar, Arnau Quera-Bofarull
{"title":"On the limits of agency in agent-based models","authors":"Ayush Chopra, Shashank Kumar, Nurullah Giray-Kuru, Ramesh Raskar, Arnau Quera-Bofarull","doi":"arxiv-2409.10568","DOIUrl":null,"url":null,"abstract":"Agent-based modeling (ABM) seeks to understand the behavior of complex\nsystems by simulating a collection of agents that act and interact within an\nenvironment. Their practical utility requires capturing realistic environment\ndynamics and adaptive agent behavior while efficiently simulating million-size\npopulations. Recent advancements in large language models (LLMs) present an\nopportunity to enhance ABMs by using LLMs as agents with further potential to\ncapture adaptive behavior. However, the computational infeasibility of using\nLLMs for large populations has hindered their widespread adoption. In this\npaper, we introduce AgentTorch -- a framework that scales ABMs to millions of\nagents while capturing high-resolution agent behavior using LLMs. We benchmark\nthe utility of LLMs as ABM agents, exploring the trade-off between simulation\nscale and individual agency. Using the COVID-19 pandemic as a case study, we\ndemonstrate how AgentTorch can simulate 8.4 million agents representing New\nYork City, capturing the impact of isolation and employment behavior on health\nand economic outcomes. We compare the performance of different agent\narchitectures based on heuristic and LLM agents in predicting disease waves and\nunemployment rates. Furthermore, we showcase AgentTorch's capabilities for\nretrospective, counterfactual, and prospective analyses, highlighting how\nadaptive agent behavior can help overcome the limitations of historical data in\npolicy design. AgentTorch is an open-source project actively being used for\npolicy-making and scientific discovery around the world. The framework is\navailable here: github.com/AgentTorch/AgentTorch.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Agent-based modeling (ABM) seeks to understand the behavior of complex systems by simulating a collection of agents that act and interact within an environment. Their practical utility requires capturing realistic environment dynamics and adaptive agent behavior while efficiently simulating million-size populations. Recent advancements in large language models (LLMs) present an opportunity to enhance ABMs by using LLMs as agents with further potential to capture adaptive behavior. However, the computational infeasibility of using LLMs for large populations has hindered their widespread adoption. In this paper, we introduce AgentTorch -- a framework that scales ABMs to millions of agents while capturing high-resolution agent behavior using LLMs. We benchmark the utility of LLMs as ABM agents, exploring the trade-off between simulation scale and individual agency. Using the COVID-19 pandemic as a case study, we demonstrate how AgentTorch can simulate 8.4 million agents representing New York City, capturing the impact of isolation and employment behavior on health and economic outcomes. We compare the performance of different agent architectures based on heuristic and LLM agents in predicting disease waves and unemployment rates. Furthermore, we showcase AgentTorch's capabilities for retrospective, counterfactual, and prospective analyses, highlighting how adaptive agent behavior can help overcome the limitations of historical data in policy design. AgentTorch is an open-source project actively being used for policy-making and scientific discovery around the world. The framework is available here: github.com/AgentTorch/AgentTorch.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于代理的模型中代理的局限性
基于代理的建模(ABM)试图通过模拟在环境中行动和互动的代理集合来理解复杂系统的行为。它们的实用性要求在高效模拟百万规模种群的同时,捕捉真实的环境动力学和自适应代理行为。大型语言模型(LLMs)的最新进展为通过使用 LLMs 作为代理来增强 ABMs 提供了机会,LLMs 在捕捉适应性行为方面具有更大的潜力。然而,将 LLMs 用于大型群体的计算不可行性阻碍了它们的广泛应用。在本文中,我们介绍了 AgentTorch -- 一个可以将 ABM 扩展到数百万个代理的框架,同时利用 LLM 捕捉高分辨率的代理行为。我们将 LLM 作为 ABM 代理的效用基准,探索模拟规模与个体代理之间的权衡。以 COVID-19 大流行为案例,我们展示了 AgentTorch 如何模拟代表纽约市的 840 万代理,捕捉隔离和就业行为对健康和经济结果的影响。我们比较了基于启发式和 LLM 代理的不同代理架构在预测疾病浪潮和失业率方面的性能。此外,我们还展示了 AgentTorch 在回顾性、反事实和前瞻性分析方面的能力,强调了自适应代理行为如何帮助克服历史数据在政策设计中的局限性。AgentTorch 是一个开源项目,目前正积极用于世界各地的政策制定和科学发现。该框架可在此处获取:github.com/AgentTorch/AgentTorch。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1