Lorin I. Breen, Keith L. Cartwright, Amanda M. Loveless, Allen L. Garner
{"title":"Limiting current in a collisional crossed-field gap","authors":"Lorin I. Breen, Keith L. Cartwright, Amanda M. Loveless, Allen L. Garner","doi":"10.1063/5.0223826","DOIUrl":null,"url":null,"abstract":"Crossed-field devices are often used in pulsed power and high-power microwave applications. Previous studies derived closed-form solutions for the limiting current of a vacuum crossed-field system, corresponding to the maximum permissible current for laminar flow, below and above the Hull cutoff BH for magnetic insulation. We extend these studies by introducing collision frequency into the electron force law as a friction term to derive the limiting current in a collisional crossed-field gap. The resulting solution recovers the vacuum crossed-field case in the limit of no collisions and the collisional space-charge limited current with general initial velocity for magnetic field B→0. In the limit of infinite collisions, we obtain a crossed-field equivalent to the Mott–Gurney law for the maximum current permissible in a collisional, nonmagnetic diode. When the collision frequency ν is less than the electron cyclotron frequency Ω, increasing initial velocity makes the critical current nonmonotonic with increasing ν with the critical current higher at B=BH for ν=Ω. As for a misaligned crossed-field gap where a component of the magnetic field was introduced parallel to the electric field across the gap, magnetic insulation is eliminated and the discontinuity at B=BH for limiting current observed in a vacuum crossed-field gap vanishes. As B→∞, the limiting current approaches a constant that depends on the initial velocity and the collision frequency.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"46 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0223826","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Crossed-field devices are often used in pulsed power and high-power microwave applications. Previous studies derived closed-form solutions for the limiting current of a vacuum crossed-field system, corresponding to the maximum permissible current for laminar flow, below and above the Hull cutoff BH for magnetic insulation. We extend these studies by introducing collision frequency into the electron force law as a friction term to derive the limiting current in a collisional crossed-field gap. The resulting solution recovers the vacuum crossed-field case in the limit of no collisions and the collisional space-charge limited current with general initial velocity for magnetic field B→0. In the limit of infinite collisions, we obtain a crossed-field equivalent to the Mott–Gurney law for the maximum current permissible in a collisional, nonmagnetic diode. When the collision frequency ν is less than the electron cyclotron frequency Ω, increasing initial velocity makes the critical current nonmonotonic with increasing ν with the critical current higher at B=BH for ν=Ω. As for a misaligned crossed-field gap where a component of the magnetic field was introduced parallel to the electric field across the gap, magnetic insulation is eliminated and the discontinuity at B=BH for limiting current observed in a vacuum crossed-field gap vanishes. As B→∞, the limiting current approaches a constant that depends on the initial velocity and the collision frequency.
期刊介绍:
Physics of Plasmas (PoP), published by AIP Publishing in cooperation with the APS Division of Plasma Physics, is committed to the publication of original research in all areas of experimental and theoretical plasma physics. PoP publishes comprehensive and in-depth review manuscripts covering important areas of study and Special Topics highlighting new and cutting-edge developments in plasma physics. Every year a special issue publishes the invited and review papers from the most recent meeting of the APS Division of Plasma Physics. PoP covers a broad range of important research in this dynamic field, including:
-Basic plasma phenomena, waves, instabilities
-Nonlinear phenomena, turbulence, transport
-Magnetically confined plasmas, heating, confinement
-Inertially confined plasmas, high-energy density plasma science, warm dense matter
-Ionospheric, solar-system, and astrophysical plasmas
-Lasers, particle beams, accelerators, radiation generation
-Radiation emission, absorption, and transport
-Low-temperature plasmas, plasma applications, plasma sources, sheaths
-Dusty plasmas