{"title":"Control Method for Ultra-Low Frequency Oscillation and Frequency Control Performance in Hydro–Wind Power Sending System","authors":"Renjie Wu, Qin Jiang, Baohong Li, Tianqi Liu, Xueyang Zeng","doi":"10.3390/electronics13183691","DOIUrl":null,"url":null,"abstract":"In a hydropower-dominated power grid, the primary frequency regulation (PFR) capability of hydropower units is typically compromised to suppress ultra-low frequency oscillations (ULFOs). However, as renewable wind power is further integrated, a practicable solution to damp ULFOs has emerged, which is to adjust the frequency control parameters of wind turbine (WT) units. Driven by the goals of overall damping enhancement and ULFO suppression, this paper first establishes an extended unified frequency model (EUFM) of a hydro–wind power sending system. Based on EUFM, the damping torque of the hydro–wind power sending system is derived, and the specific impact of WT control parameters on ULFOs and PFR characteristics is investigated. Then, a novel optimization objective function considering damping in the ultra-low frequency band and PFR is formulated and solved using an intelligence algorithm. By optimizing the parameters of the WT to suppress ULFOs, the PFR capability of hydropower units can be released. Finally, simulation results verify that the optimized WT parameters can simultaneously address the ULFO problem and guarantee PFR performance, thereby enhancing the frequency dynamic stability of the sending system.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183691","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In a hydropower-dominated power grid, the primary frequency regulation (PFR) capability of hydropower units is typically compromised to suppress ultra-low frequency oscillations (ULFOs). However, as renewable wind power is further integrated, a practicable solution to damp ULFOs has emerged, which is to adjust the frequency control parameters of wind turbine (WT) units. Driven by the goals of overall damping enhancement and ULFO suppression, this paper first establishes an extended unified frequency model (EUFM) of a hydro–wind power sending system. Based on EUFM, the damping torque of the hydro–wind power sending system is derived, and the specific impact of WT control parameters on ULFOs and PFR characteristics is investigated. Then, a novel optimization objective function considering damping in the ultra-low frequency band and PFR is formulated and solved using an intelligence algorithm. By optimizing the parameters of the WT to suppress ULFOs, the PFR capability of hydropower units can be released. Finally, simulation results verify that the optimized WT parameters can simultaneously address the ULFO problem and guarantee PFR performance, thereby enhancing the frequency dynamic stability of the sending system.
ElectronicsComputer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍:
Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.