Exploring Dimensionality Reduction of SDSS Spectral Abundances

Qianyu Fan, Joshua S. Speagle
{"title":"Exploring Dimensionality Reduction of SDSS Spectral Abundances","authors":"Qianyu Fan, Joshua S. Speagle","doi":"arxiv-2409.09227","DOIUrl":null,"url":null,"abstract":"High-resolution stellar spectra offer valuable insights into atmospheric\nparameters and chemical compositions. However, their inherent complexity and\nhigh-dimensionality present challenges in fully utilizing the information they\ncontain. In this study, we utilize data from the Apache Point Observatory\nGalactic Evolution Experiment (APOGEE) within the Sloan Digital Sky Survey IV\n(SDSS-IV) to explore latent representations of chemical abundances by applying\nfive dimensionality reduction techniques: PCA, t-SNE, UMAP, Autoencoder, and\nVAE. Through this exploration, we evaluate the preservation of information and\ncompare reconstructed outputs with the original 19 chemical abundance data. Our\nfindings reveal a performance ranking of PCA < UMAP < t-SNE < VAE <\nAutoencoder, through comparing their explained variance under optimized MSE.\nThe performance of non-linear (Autoencoder and VAE) algorithms has\napproximately 10\\% improvement compared to linear (PCA) algorithm. This\ndifference can be referred to as the \"non-linearity gap.\" Future work should\nfocus on incorporating measurement errors into extension VAEs, thereby\nenhancing the reliability and interpretability of chemical abundance\nexploration in astronomical spectra.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-resolution stellar spectra offer valuable insights into atmospheric parameters and chemical compositions. However, their inherent complexity and high-dimensionality present challenges in fully utilizing the information they contain. In this study, we utilize data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) within the Sloan Digital Sky Survey IV (SDSS-IV) to explore latent representations of chemical abundances by applying five dimensionality reduction techniques: PCA, t-SNE, UMAP, Autoencoder, and VAE. Through this exploration, we evaluate the preservation of information and compare reconstructed outputs with the original 19 chemical abundance data. Our findings reveal a performance ranking of PCA < UMAP < t-SNE < VAE < Autoencoder, through comparing their explained variance under optimized MSE. The performance of non-linear (Autoencoder and VAE) algorithms has approximately 10\% improvement compared to linear (PCA) algorithm. This difference can be referred to as the "non-linearity gap." Future work should focus on incorporating measurement errors into extension VAEs, thereby enhancing the reliability and interpretability of chemical abundance exploration in astronomical spectra.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索 SDSS 光谱丰度的降维方法
高分辨率恒星光谱为了解大气参数和化学成分提供了宝贵的信息。然而,它们固有的复杂性和高维度给充分利用其中的信息带来了挑战。在这项研究中,我们利用斯隆数字巡天 IV(SDSS-IV)中阿帕奇点天文台银河演化实验(APOGEE)的数据,通过应用五种降维技术来探索化学丰度的潜在表征:PCA、t-SNE、UMAP、自动编码器和VAE。通过这种探索,我们评估了信息的保存情况,并将重建输出与原始的 19 个化学丰度数据进行了比较。通过比较它们在优化 MSE 条件下的解释方差,我们的发现揭示了 PCA < UMAP < t-SNE < VAE < Autoencoder 的性能排名。这种差异可称为 "非线性差距"。未来的工作重点是将测量误差纳入扩展 VAE,从而提高天文光谱中化学丰度探索的可靠性和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian estimation of the number of significant principal components for cultural data Optimal Visual Search with Highly Heuristic Decision Rules Who's the GOAT? Sports Rankings and Data-Driven Random Walks on the Symmetric Group Conformity assessment of processes and lots in the framework of JCGM 106:2012 Equity considerations in COVID-19 vaccine allocation modelling: a literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1