Engineering hierarchical interfaces in high-temperature polymer dielectrics for electrostatic supercapacitors†

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Horizons Pub Date : 2024-09-14 DOI:10.1039/D4MH01123F
Xu Fan, Zhicheng Li, Yu Zhang, Peng Wang, Jinjun Liu, Jinhong Yu, Jiwei Zhai, Weiping Li and Zhongbin Pan
{"title":"Engineering hierarchical interfaces in high-temperature polymer dielectrics for electrostatic supercapacitors†","authors":"Xu Fan, Zhicheng Li, Yu Zhang, Peng Wang, Jinjun Liu, Jinhong Yu, Jiwei Zhai, Weiping Li and Zhongbin Pan","doi":"10.1039/D4MH01123F","DOIUrl":null,"url":null,"abstract":"<p >Dielectric capacitors are pivotal elements in advanced pulsed power devices and high-voltage, high-capacity power electronic converters, crucial for efficient energy storage. However, a major challenge remains the significant reduction in energy density and charge–discharged efficiency of dielectric polymers under high temperatures, primarily due to heightened electrical conduction losses. This study introduces a universal approach of heterojunction interface engineering in polyethersulfone (PESU) composites, aimed at improving capacitive performance across a broad temperature range. The introduction of one-dimensional heterojunction BaTiO<small><sub>3</sub></small>@Al<small><sub>2</sub></small>O<small><sub>3</sub></small> nanofibers with large aspect ratios could enhance both the dielectric constant (<em>ε</em><small><sub>r</sub></small>) and breakdown strength (<em>E</em><small><sub>b</sub></small>). Specifically, the creation of hierarchical interfaces increases the trap density and energy levels for mobile charges, effectively reducing conduction losses and improving <em>E</em><small><sub>b</sub></small> under high-temperature conditions. Consequently, the PESU-3 vol% BaTiO<small><sub>3</sub></small>@Al<small><sub>2</sub></small>O<small><sub>3</sub></small> nanocomposite achieves an excellent energy density of 7.3 J cm<small><sup>−3</sup></small> with over 90% retention at 150 °C and 550 MV m<small><sup>−1</sup></small>. Finite element simulations further confirm that the heterojunction structure of BaTiO<small><sub>3</sub></small>@Al<small><sub>2</sub></small>O<small><sub>3</sub></small> nanofibers effectively inhibits the growth of breakdown paths. This work demonstrates that hierarchical interface engineering offers a powerful strategy to enhance capacitive performance in dielectric polymer composites under harsh conditions.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 23","pages":" 6073-6081"},"PeriodicalIF":12.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mh/d4mh01123f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dielectric capacitors are pivotal elements in advanced pulsed power devices and high-voltage, high-capacity power electronic converters, crucial for efficient energy storage. However, a major challenge remains the significant reduction in energy density and charge–discharged efficiency of dielectric polymers under high temperatures, primarily due to heightened electrical conduction losses. This study introduces a universal approach of heterojunction interface engineering in polyethersulfone (PESU) composites, aimed at improving capacitive performance across a broad temperature range. The introduction of one-dimensional heterojunction BaTiO3@Al2O3 nanofibers with large aspect ratios could enhance both the dielectric constant (εr) and breakdown strength (Eb). Specifically, the creation of hierarchical interfaces increases the trap density and energy levels for mobile charges, effectively reducing conduction losses and improving Eb under high-temperature conditions. Consequently, the PESU-3 vol% BaTiO3@Al2O3 nanocomposite achieves an excellent energy density of 7.3 J cm−3 with over 90% retention at 150 °C and 550 MV m−1. Finite element simulations further confirm that the heterojunction structure of BaTiO3@Al2O3 nanofibers effectively inhibits the growth of breakdown paths. This work demonstrates that hierarchical interface engineering offers a powerful strategy to enhance capacitive performance in dielectric polymer composites under harsh conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为静电超级电容器设计高温聚合物电介质中的分层界面
电介质电容器是先进脉冲功率装置和高压大容量电力电子转换器的关键元件,对高效储能至关重要。然而,电介质聚合物在高温条件下的能量密度和充放电效率显著降低,这主要是由于电传导损耗增加造成的。本研究介绍了一种在聚醚砜(PESU)复合材料中进行异质结界面工程的通用方法,旨在改善其在宽温度范围内的电容性能。引入大长径比一维异质结 BaTiO3@Al2O3 纳米纤维可同时提高介电常数(εr)和击穿强度(Eb)。具体来说,分层界面的形成增加了移动电荷的阱密度和能级,从而有效降低了传导损耗,提高了高温条件下的击穿强度。因此,PESU-3 vol.% BaTiO3@Al2O3 纳米复合材料在 150°C 和 550 MV/m 温度条件下的能量密度达到了 7.3 J/cm³,保持率超过 90%。有限元模拟进一步证实,BaTiO3@Al2O3 纳米纤维的异质结结构能有效抑制击穿路径的增长。这项研究表明,分层界面工程是在苛刻条件下提高电介质聚合物复合材料电容性能的有力策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
期刊最新文献
DNA nanotechnology-based strategies for minimising hybridisation-dependent off-target effects in oligonucleotide therapies. Vector substrate design for grain boundary engineering: boosting oxygen evolution reaction performance in LaNiO3. A streamlined algorithm for two-dimensional bandgaps and defect-state energy variations in InGaN-based micro-LEDs. Flexible silicon for high-performance photovoltaics, photodetectors and bio-interfaced electronics. High strength, self-activating ability and fast adhesion of polyurethane adhesives based on rosin structure in different environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1