DNA nanotechnology-based strategies for minimising hybridisation-dependent off-target effects in oligonucleotide therapies.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Horizons Pub Date : 2024-12-18 DOI:10.1039/d4mh01158a
Xiaoyu Li, Huanhuan Hu, Hailong Wang, Jia Liu, Wenting Jiang, Feng Zhou, Jiantao Zhang
{"title":"DNA nanotechnology-based strategies for minimising hybridisation-dependent off-target effects in oligonucleotide therapies.","authors":"Xiaoyu Li, Huanhuan Hu, Hailong Wang, Jia Liu, Wenting Jiang, Feng Zhou, Jiantao Zhang","doi":"10.1039/d4mh01158a","DOIUrl":null,"url":null,"abstract":"<p><p>Targeted therapy has emerged as a transformative breakthrough in modern medicine. Oligonucleotide drugs, such as antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs), have made significant advancements in targeted therapy. Other oligonucleotide-based therapeutics like clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems are also leading a revolution in targeted gene therapy. However, hybridisation-dependent off-target effects, arising from imperfect base pairing, remain a significant and growing concern for the clinical translation of oligonucleotide-based therapeutics. These mismatches in base pairing can lead to unintended steric blocking or cleavage events in non-pathological genes, affecting the efficacy and safety of the oligonucleotide drugs. In this review, we examine recent developments in oligonucleotide-based targeted therapeutics, explore the factors influencing sequence-dependent targeting specificity, and discuss the current approaches employed to reduce the off-target side effects. The existing strategies, such as chemical modifications and oligonucleotide length optimisation, often require a trade-off between specificity and binding affinity. To further address the challenge of hybridisation-dependent off-target effects, we discuss DNA nanotechnology-based strategies that leverage the collaborative effects of nucleic acid assembly in the design of oligonucleotide-based therapies. In DNA nanotechnology, collaborative effects refer to the cooperative interactions between individual strands or nanostructures, where multiple bindings result in more stable and specific hybridisation behaviour. By requiring multiple complementary interactions to occur simultaneously, the likelihood of unintended partially complementary binding events in nucleic acid hybridisation should be reduced. And thus, with the aid of collaborative effects, DNA nanotechnology has great promise in achieving both high binding affinity and high specificity to minimise the hybridisation-dependent off-target effects of oligonucleotide-based therapeutics.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01158a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Targeted therapy has emerged as a transformative breakthrough in modern medicine. Oligonucleotide drugs, such as antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs), have made significant advancements in targeted therapy. Other oligonucleotide-based therapeutics like clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems are also leading a revolution in targeted gene therapy. However, hybridisation-dependent off-target effects, arising from imperfect base pairing, remain a significant and growing concern for the clinical translation of oligonucleotide-based therapeutics. These mismatches in base pairing can lead to unintended steric blocking or cleavage events in non-pathological genes, affecting the efficacy and safety of the oligonucleotide drugs. In this review, we examine recent developments in oligonucleotide-based targeted therapeutics, explore the factors influencing sequence-dependent targeting specificity, and discuss the current approaches employed to reduce the off-target side effects. The existing strategies, such as chemical modifications and oligonucleotide length optimisation, often require a trade-off between specificity and binding affinity. To further address the challenge of hybridisation-dependent off-target effects, we discuss DNA nanotechnology-based strategies that leverage the collaborative effects of nucleic acid assembly in the design of oligonucleotide-based therapies. In DNA nanotechnology, collaborative effects refer to the cooperative interactions between individual strands or nanostructures, where multiple bindings result in more stable and specific hybridisation behaviour. By requiring multiple complementary interactions to occur simultaneously, the likelihood of unintended partially complementary binding events in nucleic acid hybridisation should be reduced. And thus, with the aid of collaborative effects, DNA nanotechnology has great promise in achieving both high binding affinity and high specificity to minimise the hybridisation-dependent off-target effects of oligonucleotide-based therapeutics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
期刊最新文献
Interfacial chemistry at solid-liquid van der Waals heterojunctions enabling sub-5 nm Ohmic contacts for monolayer semiconductors. DNA nanotechnology-based strategies for minimising hybridisation-dependent off-target effects in oligonucleotide therapies. Vector substrate design for grain boundary engineering: boosting oxygen evolution reaction performance in LaNiO3. A streamlined algorithm for two-dimensional bandgaps and defect-state energy variations in InGaN-based micro-LEDs. Flexible silicon for high-performance photovoltaics, photodetectors and bio-interfaced electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1