Ji Wu, Jian Li, Bo Huang, Sunbin Dong, Luyang Wu, Xiping Shen, Zhigang Zheng
{"title":"Radiomics predicts the prognosis of patients with clear cell renal cell carcinoma by reflecting the tumor heterogeneity and microenvironment","authors":"Ji Wu, Jian Li, Bo Huang, Sunbin Dong, Luyang Wu, Xiping Shen, Zhigang Zheng","doi":"10.1186/s40644-024-00768-7","DOIUrl":null,"url":null,"abstract":"We aimed to develop and externally validate a CT-based deep learning radiomics model for predicting overall survival (OS) in clear cell renal cell carcinoma (ccRCC) patients, and investigate the association of radiomics with tumor heterogeneity and microenvironment. The clinicopathological data and contrast-enhanced CT images of 512 ccRCC patients from three institutions were collected. A total of 3566 deep learning radiomics features were extracted from 3D regions of interest. We generated the deep learning radiomics score (DLRS), and validated this score using an external cohort from TCIA. Patients were divided into high and low-score groups by the DLRS. Sequencing data from the corresponding TCGA cohort were used to reveal the differences of tumor heterogeneity and microenvironment between different radiomics score groups. What’s more, univariate and multivariate Cox regression were used to identify independent risk factors of poor OS after operation. A combined model was developed by incorporating the DLRS and clinicopathological features. The SHapley Additive exPlanation method was used for interpretation of predictive results. At multivariate Cox regression analysis, the DLRS was identified as an independent risk factor of poor OS. The genomic landscape of different radiomics score groups was investigated. The heterogeneity of tumor cell and tumor microenvironment significantly varied between both groups. In the test cohort, the combined model had a great predictive performance, with AUCs (95%CI) for 1, 3 and 5-year OS of 0.879(0.868–0.931), 0.854(0.819–0.899) and 0.831(0.813–0.868), respectively. There was a significant difference in survival time between different groups stratified by the combined model. This model showed great discrimination and calibration, outperforming the existing prognostic models (all p values < 0.05). The combined model allowed for the prognostic prediction of ccRCC patients by incorporating the DLRS and significant clinicopathologic features. The radiomics features could reflect the tumor heterogeneity and microenvironment.","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-024-00768-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We aimed to develop and externally validate a CT-based deep learning radiomics model for predicting overall survival (OS) in clear cell renal cell carcinoma (ccRCC) patients, and investigate the association of radiomics with tumor heterogeneity and microenvironment. The clinicopathological data and contrast-enhanced CT images of 512 ccRCC patients from three institutions were collected. A total of 3566 deep learning radiomics features were extracted from 3D regions of interest. We generated the deep learning radiomics score (DLRS), and validated this score using an external cohort from TCIA. Patients were divided into high and low-score groups by the DLRS. Sequencing data from the corresponding TCGA cohort were used to reveal the differences of tumor heterogeneity and microenvironment between different radiomics score groups. What’s more, univariate and multivariate Cox regression were used to identify independent risk factors of poor OS after operation. A combined model was developed by incorporating the DLRS and clinicopathological features. The SHapley Additive exPlanation method was used for interpretation of predictive results. At multivariate Cox regression analysis, the DLRS was identified as an independent risk factor of poor OS. The genomic landscape of different radiomics score groups was investigated. The heterogeneity of tumor cell and tumor microenvironment significantly varied between both groups. In the test cohort, the combined model had a great predictive performance, with AUCs (95%CI) for 1, 3 and 5-year OS of 0.879(0.868–0.931), 0.854(0.819–0.899) and 0.831(0.813–0.868), respectively. There was a significant difference in survival time between different groups stratified by the combined model. This model showed great discrimination and calibration, outperforming the existing prognostic models (all p values < 0.05). The combined model allowed for the prognostic prediction of ccRCC patients by incorporating the DLRS and significant clinicopathologic features. The radiomics features could reflect the tumor heterogeneity and microenvironment.
Cancer ImagingONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍:
Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology.
The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include:
Breast Imaging
Chest
Complications of treatment
Ear, Nose & Throat
Gastrointestinal
Hepatobiliary & Pancreatic
Imaging biomarkers
Interventional
Lymphoma
Measurement of tumour response
Molecular functional imaging
Musculoskeletal
Neuro oncology
Nuclear Medicine
Paediatric.