Guoyu Wang,Yang Han,Juhua Zhuang,Zhongchao Mai,Wei Xia,Ying Ye
{"title":"Echinacoside inhibits hepatocellular carcinoma progression by targeting the miR-30c-5p/FOXD1/KLF12 axis.","authors":"Guoyu Wang,Yang Han,Juhua Zhuang,Zhongchao Mai,Wei Xia,Ying Ye","doi":"10.3233/thc-241449","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nHepatocellular carcinoma (HCC) is the third leading cause of cancer-attributed mortality and the primary liver malignancy in the world. Echinacoside is a phenylethanoid glycoside derived from traditional Chinese medicinal herbs which possessed multiple health benefits on humans, including anti-tumor effects.\r\n\r\nOBJECTIVE\r\nThis study aimed to demonstrate the function of echinacoside in HCC progression and the involvement of miR-30c-5p/FOXD1/KLF12 axis.\r\n\r\nMETHODS\r\nThe HepG2 cells were treated by different dose of echinacoside, miR-30c-5p mimic, miR-30c-5p inhibitor, and FOXD1 overexpression lentiviruses or siRNA individually or simultaneously. The cell invasion and migration were measured by transwell assay. RNA and protein levels were tested by RT-PCR and western blot, respectively. The regulatory function of miR-30c-5p on Forkhead box D1 (FOXD1), FOXD1 on Krüppel-like factor 12 (KLF12) was tested by luciferase reporter assay or/and ChIP assay. Meanwhile, a liver cancer lung metastasis mice model was used to examine the functions of echinacoside and miR-30c-5p on HCC metastasis in vivo. Moreover, the correlations among miR-30c-5p, FOXD1, KLF12, and HCC prognosis was analyzed using clinical sample and TCGA database.\r\n\r\nRESULTS\r\nBased on both in vitro and in vivo investigations, we found that echinacoside could inhibit HCC cell migration, invasiveness, and tumor metastasis, and associated with the enhanced miR-30c-5p/FOXD1/KLF12 axis. Furthermore, through analyzing the interactions among intermediate molecules, we revealed that miR-30c-5p, FOXD1, and KLF12üere clinically relevant with each other in HCC patients, correlated with HCC prognosis, and regulated by echinacoside to contribute in the inhibition of HCC progression.\r\n\r\nCONCLUSIONS\r\nThese findings suggest that echinacoside could inhibit HCC progression, and the mechanism related to the enhanced miR-30c-5p/FOXD1/KLF12 axis. Moreover, the abovementioned intermediate molecules might serve as prospective biomarkers for HCC prognosis.","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":"6 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/thc-241449","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-attributed mortality and the primary liver malignancy in the world. Echinacoside is a phenylethanoid glycoside derived from traditional Chinese medicinal herbs which possessed multiple health benefits on humans, including anti-tumor effects.
OBJECTIVE
This study aimed to demonstrate the function of echinacoside in HCC progression and the involvement of miR-30c-5p/FOXD1/KLF12 axis.
METHODS
The HepG2 cells were treated by different dose of echinacoside, miR-30c-5p mimic, miR-30c-5p inhibitor, and FOXD1 overexpression lentiviruses or siRNA individually or simultaneously. The cell invasion and migration were measured by transwell assay. RNA and protein levels were tested by RT-PCR and western blot, respectively. The regulatory function of miR-30c-5p on Forkhead box D1 (FOXD1), FOXD1 on Krüppel-like factor 12 (KLF12) was tested by luciferase reporter assay or/and ChIP assay. Meanwhile, a liver cancer lung metastasis mice model was used to examine the functions of echinacoside and miR-30c-5p on HCC metastasis in vivo. Moreover, the correlations among miR-30c-5p, FOXD1, KLF12, and HCC prognosis was analyzed using clinical sample and TCGA database.
RESULTS
Based on both in vitro and in vivo investigations, we found that echinacoside could inhibit HCC cell migration, invasiveness, and tumor metastasis, and associated with the enhanced miR-30c-5p/FOXD1/KLF12 axis. Furthermore, through analyzing the interactions among intermediate molecules, we revealed that miR-30c-5p, FOXD1, and KLF12üere clinically relevant with each other in HCC patients, correlated with HCC prognosis, and regulated by echinacoside to contribute in the inhibition of HCC progression.
CONCLUSIONS
These findings suggest that echinacoside could inhibit HCC progression, and the mechanism related to the enhanced miR-30c-5p/FOXD1/KLF12 axis. Moreover, the abovementioned intermediate molecules might serve as prospective biomarkers for HCC prognosis.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).