Agreement between manual and automatic ultrasound measurement of the velocity–time integral in the left ventricular outflow tract in intensive care patients: evaluation of the AUTO-VTI® tool
Benjamin Louart, Laurent Muller, Baptiste Emond, Nicolas Boulet, Claire Roger
{"title":"Agreement between manual and automatic ultrasound measurement of the velocity–time integral in the left ventricular outflow tract in intensive care patients: evaluation of the AUTO-VTI® tool","authors":"Benjamin Louart, Laurent Muller, Baptiste Emond, Nicolas Boulet, Claire Roger","doi":"10.1007/s10877-024-01215-5","DOIUrl":null,"url":null,"abstract":"<p>Transthoracic echocardiography is widely used in intensive care unit (ICU) to manage patients with acute circulatory failure. Recently, automated ultrasound (US) measurement applications have been developed but their clinical performance has not been evaluated yet. The aim of this study was to assess the agreement between automated and manual measurements of the velocity–time integral in the left ventricular outflow tract (VTI-LVOT) using the auto-VTI® tool. This prospective, single-center, interventional study included ICU patients with acute circulatory failure. The examination involved two successive manual measurements of VTI-LVOT (mean of 3 consecutive heartbeats in regular sinus rhythm, and 5 heartbeats in irregular rhythm), followed by a measurement using auto-VTI® software. In patients receiving a fluid challenge, trending ability in detecting fluid responsiveness was also evaluated. Seventy patients were included between January 19, 2020, and September 24, 2020, at the Nîmes University Hospital. The feasibility of the auto-VTI® was 94%. The mean difference between the two methods was 11% with limits of agreement from − 19% to 42%. The proportion of agreement at the 15% difference threshold was 68% [58%; 80%]. The precision and least significant change measured for the manual measurement of VTI were 7.4 and 10.5%, respectively, and by inference for the automated method 28% and 40%. The new auto-VTI® tool, despite interesting feasibility, demonstrated an insufficient agreement with a systematic bias and an insufficient precision limiting its implementation in critically ill patients.</p><p><i>Clinical trial registration</i>: ClinicalTrials.gov identifier: NCT04360304.</p>","PeriodicalId":15513,"journal":{"name":"Journal of Clinical Monitoring and Computing","volume":"104 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Monitoring and Computing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10877-024-01215-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transthoracic echocardiography is widely used in intensive care unit (ICU) to manage patients with acute circulatory failure. Recently, automated ultrasound (US) measurement applications have been developed but their clinical performance has not been evaluated yet. The aim of this study was to assess the agreement between automated and manual measurements of the velocity–time integral in the left ventricular outflow tract (VTI-LVOT) using the auto-VTI® tool. This prospective, single-center, interventional study included ICU patients with acute circulatory failure. The examination involved two successive manual measurements of VTI-LVOT (mean of 3 consecutive heartbeats in regular sinus rhythm, and 5 heartbeats in irregular rhythm), followed by a measurement using auto-VTI® software. In patients receiving a fluid challenge, trending ability in detecting fluid responsiveness was also evaluated. Seventy patients were included between January 19, 2020, and September 24, 2020, at the Nîmes University Hospital. The feasibility of the auto-VTI® was 94%. The mean difference between the two methods was 11% with limits of agreement from − 19% to 42%. The proportion of agreement at the 15% difference threshold was 68% [58%; 80%]. The precision and least significant change measured for the manual measurement of VTI were 7.4 and 10.5%, respectively, and by inference for the automated method 28% and 40%. The new auto-VTI® tool, despite interesting feasibility, demonstrated an insufficient agreement with a systematic bias and an insufficient precision limiting its implementation in critically ill patients.
期刊介绍:
The Journal of Clinical Monitoring and Computing is a clinical journal publishing papers related to technology in the fields of anaesthesia, intensive care medicine, emergency medicine, and peri-operative medicine.
The journal has links with numerous specialist societies, including editorial board representatives from the European Society for Computing and Technology in Anaesthesia and Intensive Care (ESCTAIC), the Society for Technology in Anesthesia (STA), the Society for Complex Acute Illness (SCAI) and the NAVAt (NAVigating towards your Anaestheisa Targets) group.
The journal publishes original papers, narrative and systematic reviews, technological notes, letters to the editor, editorial or commentary papers, and policy statements or guidelines from national or international societies. The journal encourages debate on published papers and technology, including letters commenting on previous publications or technological concerns. The journal occasionally publishes special issues with technological or clinical themes, or reports and abstracts from scientificmeetings. Special issues proposals should be sent to the Editor-in-Chief. Specific details of types of papers, and the clinical and technological content of papers considered within scope can be found in instructions for authors.