{"title":"Exploring Plant Diversity Through Enzyme‐Mediated Analysis Using Electro‐Carbon Sensors","authors":"Vinaykumar Rachappanavar","doi":"10.1111/pbr.13223","DOIUrl":null,"url":null,"abstract":"This review explores the application of enzyme‐mediated analysis using electro‐carbon sensors to investigate plant diversity. Precision plant genotype fingerprinting (PPGF) represents a paradigm shift in agricultural science, merging the fields of phyto‐enzyme identification and quantification with cutting‐edge electro‐sensor technology. PPGF acts as a powerful tool for dissecting the genetic makeup of plant species by meticulously examining their unique phyto‐enzyme signatures. Electro‐sensor technology emerges as a pioneering force, utilizing electro‐analytical methods to precisely measure and differentiate these markers. Enzyme‐based sensors are capable of detecting plant metabolites even at low concentrations, enabling highly precise and accurate measurements. Furthermore, they are generally more eco‐friendly because they use fewer hazardous chemicals and produce less waste. These sensors can function under gentle conditions and can be miniaturized, making them highly suitable for field applications. This synergistic approach between PPGF and electro‐sensor technology ushers in a transformative era, offering unprecedented insights into plant genomics and paving the way for novel avenues for PPGF. Overall, enzyme‐based electrochemical sensors contribute to improving the efficiency and effectiveness of plant fingerprinting, thereby facilitating more comprehensive and precise plant phenotyping and research endeavours.","PeriodicalId":20228,"journal":{"name":"Plant Breeding","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/pbr.13223","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
This review explores the application of enzyme‐mediated analysis using electro‐carbon sensors to investigate plant diversity. Precision plant genotype fingerprinting (PPGF) represents a paradigm shift in agricultural science, merging the fields of phyto‐enzyme identification and quantification with cutting‐edge electro‐sensor technology. PPGF acts as a powerful tool for dissecting the genetic makeup of plant species by meticulously examining their unique phyto‐enzyme signatures. Electro‐sensor technology emerges as a pioneering force, utilizing electro‐analytical methods to precisely measure and differentiate these markers. Enzyme‐based sensors are capable of detecting plant metabolites even at low concentrations, enabling highly precise and accurate measurements. Furthermore, they are generally more eco‐friendly because they use fewer hazardous chemicals and produce less waste. These sensors can function under gentle conditions and can be miniaturized, making them highly suitable for field applications. This synergistic approach between PPGF and electro‐sensor technology ushers in a transformative era, offering unprecedented insights into plant genomics and paving the way for novel avenues for PPGF. Overall, enzyme‐based electrochemical sensors contribute to improving the efficiency and effectiveness of plant fingerprinting, thereby facilitating more comprehensive and precise plant phenotyping and research endeavours.
期刊介绍:
PLANT BREEDING publishes full-length original manuscripts and review articles on all aspects of plant improvement, breeding methodologies, and genetics to include qualitative and quantitative inheritance and genomics of major crop species. PLANT BREEDING provides readers with cutting-edge information on use of molecular techniques and genomics as they relate to improving gain from selection. Since its subject matter embraces all aspects of crop improvement, its content is sought after by both industry and academia. Fields of interest: Genetics of cultivated plants as well as research in practical plant breeding.