Protein folding, protein dynamics and the topology of self-motions.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Royal Society Open Science Pub Date : 2024-09-18 DOI:10.1098/rsos.240873
Steven Hayward
{"title":"Protein folding, protein dynamics and the topology of self-motions.","authors":"Steven Hayward","doi":"10.1098/rsos.240873","DOIUrl":null,"url":null,"abstract":"It has long been recognized that segments of the protein main chain are like robotic manipulators and inverse kinematics methods from robotics have been applied to model loops to bridge gaps in protein comparative modelling. The complex internal motion of a redundant manipulator with fixed ends is called a self-motion and its character is determined by the relative position of its ends. Self-motions that are topologically equivalent (homotopic) occupy the same continous region of the configuration space. Topologically inequivalent (non-homotopic) regions are separated by co-regular surfaces and crossing a co-regular surface can result in a sudden dramatic change in the character of the self-motion. It is shown, using a five-residue type I β-turn, that these concepts apply to protein segments and that as the ends of the five-residue segment come closer together, a co-regular surface is crossed, and the structure is locked in to becoming either a type I or type I' turn. It is also shown that the type II turn is topologically equivalent to the type I' turn, not the type I turn. These results have implications for both native-state protein dynamics and protein folding.","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240873","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

It has long been recognized that segments of the protein main chain are like robotic manipulators and inverse kinematics methods from robotics have been applied to model loops to bridge gaps in protein comparative modelling. The complex internal motion of a redundant manipulator with fixed ends is called a self-motion and its character is determined by the relative position of its ends. Self-motions that are topologically equivalent (homotopic) occupy the same continous region of the configuration space. Topologically inequivalent (non-homotopic) regions are separated by co-regular surfaces and crossing a co-regular surface can result in a sudden dramatic change in the character of the self-motion. It is shown, using a five-residue type I β-turn, that these concepts apply to protein segments and that as the ends of the five-residue segment come closer together, a co-regular surface is crossed, and the structure is locked in to becoming either a type I or type I' turn. It is also shown that the type II turn is topologically equivalent to the type I' turn, not the type I turn. These results have implications for both native-state protein dynamics and protein folding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白质折叠、蛋白质动力学和自我运动拓扑。
人们很早就认识到,蛋白质主链的片段就像机器人操纵器,机器人学中的逆运动学方法已被应用于环路建模,以弥补蛋白质比较建模的不足。具有固定末端的冗余机械手的复杂内部运动称为自运动,其特征由末端的相对位置决定。拓扑上等价(同位)的自运动占据构型空间的同一连续区域。拓扑上不等同(非同向)的区域被同规则表面隔开,穿过同规则表面会导致自运动特性的突然剧变。利用五残基 I 型 β 转折证明,这些概念适用于蛋白质片段,当五残基片段的两端靠得更近时,共规则表面被穿过,结构被锁定为 I 型或 I'型转折。研究还表明,II 型转折在拓扑学上等同于 I'型转折,而不是 I 型转折。这些结果对原生态蛋白质动力学和蛋白质折叠都有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
期刊最新文献
Heliconius butterflies use wide-field landscape features, but not individual local landmarks, during spatial learning. Appreciation of singing and speaking voices is highly idiosyncratic. A first vocal repertoire characterization of long-finned pilot whales (Globicephala melas) in the Mediterranean Sea: a machine learning approach. Beyond bigrams: call sequencing in the common marmoset (Callithrix jacchus) vocal system. Enhancing biodiversity: historical ecology and biogeography of the Santa Catalina Island ground squirrel, Otospermophilus beecheyi nesioticus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1