On the combined effects of chemical reaction and nonlinear thermal radiation on natural convection heat and mass transfer over a vertical plate

IF 1.7 4区 数学 Q1 Mathematics Boundary Value Problems Pub Date : 2024-09-19 DOI:10.1186/s13661-024-01912-9
Gabriel Samaila, Basant K. Jha
{"title":"On the combined effects of chemical reaction and nonlinear thermal radiation on natural convection heat and mass transfer over a vertical plate","authors":"Gabriel Samaila, Basant K. Jha","doi":"10.1186/s13661-024-01912-9","DOIUrl":null,"url":null,"abstract":"The analysis of a laminar boundary layer flow near a vertical plate governed by highly nonlinear thermal radiation and chemical reaction is presented. The Boussinesq approximation is used to predict the nonlinear nature of density variation with temperature and concentration. The plate surface was subjected to the convective surface boundary condition. The partial differential equations relevant to the fluid flow was converted to ordinary differential equations, which were solved using the Runge–Kutta method after employing the shooting procedure. Some major findings are that the radiative heat flux increases the thermal energy within the boundary layer and thereby reduces the fluid viscosity, which gives rise to the velocity profile. At higher chemical reaction applications, the momentum and concentration boundary layer thickness become thinner, whereas thicker for thermal boundary layer. The rate at which the fluid reverses within the boundary increases with chemical reaction parameter. Moreover, the rate of mass transfer within the boundary layer is enhanced with chemical reaction parameters, but the contrary is true for heat transfer from the plate surface into the free stream region. There is an observable increase in the reversible fluid flow within the boundary layer for higher nonlinear density variation with temperature and concentration.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01912-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The analysis of a laminar boundary layer flow near a vertical plate governed by highly nonlinear thermal radiation and chemical reaction is presented. The Boussinesq approximation is used to predict the nonlinear nature of density variation with temperature and concentration. The plate surface was subjected to the convective surface boundary condition. The partial differential equations relevant to the fluid flow was converted to ordinary differential equations, which were solved using the Runge–Kutta method after employing the shooting procedure. Some major findings are that the radiative heat flux increases the thermal energy within the boundary layer and thereby reduces the fluid viscosity, which gives rise to the velocity profile. At higher chemical reaction applications, the momentum and concentration boundary layer thickness become thinner, whereas thicker for thermal boundary layer. The rate at which the fluid reverses within the boundary increases with chemical reaction parameter. Moreover, the rate of mass transfer within the boundary layer is enhanced with chemical reaction parameters, but the contrary is true for heat transfer from the plate surface into the free stream region. There is an observable increase in the reversible fluid flow within the boundary layer for higher nonlinear density variation with temperature and concentration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
化学反应和非线性热辐射对垂直板自然对流传热传质的综合影响
本文分析了垂直板附近受高度非线性热辐射和化学反应控制的层流边界层流。利用布森斯克近似来预测密度随温度和浓度变化的非线性性质。板表面采用对流表面边界条件。与流体流动相关的偏微分方程被转换为常微分方程,并在采用拍摄程序后使用 Runge-Kutta 方法进行求解。一些主要发现是,辐射热通量增加了边界层内的热能,从而降低了流体粘度,产生了速度曲线。在较高的化学反应应用中,动量和浓度边界层厚度变薄,而热边界层变厚。流体在边界内的反向速率随化学反应参数的增加而增加。此外,边界层内的传质速率随化学反应参数的变化而增加,但从板表面传入自由流区域的热量则相反。当非线性密度随温度和浓度变化较大时,边界层内的可逆流体流动明显增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Boundary Value Problems
Boundary Value Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.00
自引率
5.90%
发文量
83
审稿时长
4 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
期刊最新文献
On the combined effects of chemical reaction and nonlinear thermal radiation on natural convection heat and mass transfer over a vertical plate Effects of fractional derivative and Wiener process on approximate boundary controllability of differential inclusion \((\mathtt{k},\varphi )\)-Hilfer fractional Langevin differential equation having multipoint boundary conditions Existence and uniqueness of positive solution to a new class of nonlocal elliptic problem with parameter dependency Classical and nonclassical Lie symmetries, bifurcation analysis, and Jacobi elliptic function solutions to a 3D-modified nonlinear wave equation in liquid involving gas bubbles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1