Observation of hydrostatic-pressure-modulated giant caloric effect and electronic topological transition

Jinying Yang, Xingchen Liu, Yibo Wang, Shen Zhang, Yang Liu, Xuebin Dong, Yiting Feng, Qiusa Ren, Ping He, Meng Lyu, Binbin Wang, Shouguo Wang, Guangheng Wu, Xixiang Zhang, Enke Liu
{"title":"Observation of hydrostatic-pressure-modulated giant caloric effect and electronic topological transition","authors":"Jinying Yang, Xingchen Liu, Yibo Wang, Shen Zhang, Yang Liu, Xuebin Dong, Yiting Feng, Qiusa Ren, Ping He, Meng Lyu, Binbin Wang, Shouguo Wang, Guangheng Wu, Xixiang Zhang, Enke Liu","doi":"arxiv-2409.10936","DOIUrl":null,"url":null,"abstract":"Phase transition is a fundamental phenomenon in condensed matter physics, in\nwhich states of matter transform to each other with various critical behaviors\nunder different conditions. The magnetic martensitic transformation features\nsignificant multi-caloric effects that benefit the solid-state cooling or heat\npumping. Meanwhile, the electronic topological transition (ETT) driven by\npressure has been rarely reported in martensitic systems. Here, the modulation\neffects of hydrostatic pressure on phase transitions in a magnetic martensitic\nalloy are reported. Owing to the huge volume expansion during the transition,\nthe martensitic transition temperature is driven from 339 to 273 K by pressure\nwithin 1 GPa, resulting in highly tunable giant baro- and magneto-caloric\neffects (BCE and MCE) in a wide working temperature range. Interestingly, an\nETT was further induced by pressure in the martensite phase, with a sudden drop\nof the measured saturation magnetization around 0.6 GPa. First-principles\ncalculations reveal a sharp change in the density of states (DOS) due to the\norbit shift around the Fermi level at the same pressure and reproduce the\nexperimental observation of magnetization. Besides, the ETT is accompanied by\nremarkable changes in the lattice parameters and the unit-cell orthorhombicity.\nThe study provides insight into pressure-modulated exotic phase-transition\nphenomena in magnetic martensitic systems.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Phase transition is a fundamental phenomenon in condensed matter physics, in which states of matter transform to each other with various critical behaviors under different conditions. The magnetic martensitic transformation features significant multi-caloric effects that benefit the solid-state cooling or heat pumping. Meanwhile, the electronic topological transition (ETT) driven by pressure has been rarely reported in martensitic systems. Here, the modulation effects of hydrostatic pressure on phase transitions in a magnetic martensitic alloy are reported. Owing to the huge volume expansion during the transition, the martensitic transition temperature is driven from 339 to 273 K by pressure within 1 GPa, resulting in highly tunable giant baro- and magneto-caloric effects (BCE and MCE) in a wide working temperature range. Interestingly, an ETT was further induced by pressure in the martensite phase, with a sudden drop of the measured saturation magnetization around 0.6 GPa. First-principles calculations reveal a sharp change in the density of states (DOS) due to the orbit shift around the Fermi level at the same pressure and reproduce the experimental observation of magnetization. Besides, the ETT is accompanied by remarkable changes in the lattice parameters and the unit-cell orthorhombicity. The study provides insight into pressure-modulated exotic phase-transition phenomena in magnetic martensitic systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
观测静压调制巨量热效应和电子拓扑转变
相变是凝聚态物理学中的一种基本现象,在这种现象中,物质状态在不同条件下相互转化,并具有各种临界行为。磁马氏体转变具有显著的多热效应,有利于固态冷却或热泵。与此同时,在马氏体体系中,由压力驱动的电子拓扑转变(ETT)却鲜有报道。本文报告了静水压力对磁性马氏体合金相变的调制效应。由于转变过程中的巨大体积膨胀,马氏体转变温度在 1 GPa 压力的驱动下从 339 K 升至 273 K,从而在较宽的工作温度范围内产生了高度可调的巨型气压和磁压差效应(BCE 和 MCE)。有趣的是,在马氏体相中,压力进一步诱发了ETT,测量到的饱和磁化率在 0.6 GPa 左右突然下降。第一原理计算显示,在相同的压力下,由于费米级附近的轨道移动,状态密度(DOS)发生了急剧变化,并再现了磁化的实验观察结果。此外,ETT 还伴随着晶格参数和单位晶胞正交性的显著变化。这项研究有助于深入了解磁性马氏体体系中的压力调制异相转变现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anionic disorder and its impact on the surface electronic structure of oxynitride photoactive semiconductors Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning Hybridization gap approaching the two-dimensional limit of topological insulator Bi$_x$Sb$_{1-x}$ Sampling Latent Material-Property Information From LLM-Derived Embedding Representations Smart Data-Driven GRU Predictor for SnO$_2$ Thin films Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1