Exploring the relation between transonic dislocation glide and stacking fault width in FCC metals

Kathryn R. Jones, Khanh Dang, Daniel N. Blaschke, Saryu J. Fensin, Abigail Hunter
{"title":"Exploring the relation between transonic dislocation glide and stacking fault width in FCC metals","authors":"Kathryn R. Jones, Khanh Dang, Daniel N. Blaschke, Saryu J. Fensin, Abigail Hunter","doi":"arxiv-2409.10705","DOIUrl":null,"url":null,"abstract":"Theory predicts limiting gliding velocities that dislocations cannot\novercome. Computational and recent experiments have shown that these limiting\nvelocities are soft barriers and dislocations can reach transonic speeds in\nhigh rate plastic deformation scenarios. In this paper we systematically\nexamine the mobility of edge and screw dislocations in several face centered\ncubic (FCC) metals (Al, Au, Pt, and Ni) in the extreme large-applied-stress\nregime using MD simulations. Our results show that edge dislocations are more\nlikely to move at transonic velocities due to their high mobility and lower\nlimiting velocity than screw dislocations. Importantly, among the considered\nFCC metals, the dislocation core structure determines the dislocation's ability\nto reach transonic velocities. This is likely due to the variation in stacking\nfault width (SFW) due to relativistic effects near the limiting velocities.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Theory predicts limiting gliding velocities that dislocations cannot overcome. Computational and recent experiments have shown that these limiting velocities are soft barriers and dislocations can reach transonic speeds in high rate plastic deformation scenarios. In this paper we systematically examine the mobility of edge and screw dislocations in several face centered cubic (FCC) metals (Al, Au, Pt, and Ni) in the extreme large-applied-stress regime using MD simulations. Our results show that edge dislocations are more likely to move at transonic velocities due to their high mobility and lower limiting velocity than screw dislocations. Importantly, among the considered FCC metals, the dislocation core structure determines the dislocation's ability to reach transonic velocities. This is likely due to the variation in stacking fault width (SFW) due to relativistic effects near the limiting velocities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索催化裂化金属中跨音速位错滑行与堆叠断层宽度之间的关系
理论预测了位错无法克服的极限滑动速度。计算和最近的实验表明,这些极限速度是软障碍,在高速塑性变形情况下,位错可以达到跨音速。在本文中,我们利用 MD 模拟系统地研究了几种面心立方(FCC)金属(铝、金、铂和镍)在极端大外加应力条件下边缘位错和螺钉位错的迁移率。我们的结果表明,与螺位错相比,边缘位错具有高迁移率和较低的极限速度,因此更有可能以跨音速运动。重要的是,在所考虑的 FCC 金属中,差排核心结构决定了差排达到跨音速的能力。这可能是由于堆叠断层宽度(SFW)在极限速度附近的相对论效应引起的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anionic disorder and its impact on the surface electronic structure of oxynitride photoactive semiconductors Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning Hybridization gap approaching the two-dimensional limit of topological insulator Bi$_x$Sb$_{1-x}$ Sampling Latent Material-Property Information From LLM-Derived Embedding Representations Smart Data-Driven GRU Predictor for SnO$_2$ Thin films Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1