Lattice Thermal Conductivity of Sun-Graphyne from Reverse Nonequilibrium Molecular Dynamics Simulations

Isaac de Macêdo Felix, Raphael Matozo Tromer, Leonardo Dantas Machado, Douglas Soares Galvão, Luiz Antônio Ribeiro Jr, Marcelo Lopes Pereira Jr
{"title":"Lattice Thermal Conductivity of Sun-Graphyne from Reverse Nonequilibrium Molecular Dynamics Simulations","authors":"Isaac de Macêdo Felix, Raphael Matozo Tromer, Leonardo Dantas Machado, Douglas Soares Galvão, Luiz Antônio Ribeiro Jr, Marcelo Lopes Pereira Jr","doi":"arxiv-2409.10355","DOIUrl":null,"url":null,"abstract":"The thermal conductivity of two-dimensional (2D) materials is critical in\ndetermining their suitability for several applications, from electronics to\nthermal management. In this study, we have used Molecular Dynamics (MD)\nsimulations to investigate the thermal conductivity and phononic properties of\n8-16-4(Sun)-Graphyne, a recently proposed 2D carbon allotrope. The thermal\nconductivity was estimated using reverse non-equilibrium MD simulations\nfollowing the Muuller-Plathe approach, revealing a strong dependence on system\nsize. Phonon dispersion calculations confirm the stability of Sun-GY while also\nshowing a significant decrease in thermal conductivity compared to graphene.\nThis decrease is attributed to acetylenic bonds, which enhance phonon\nscattering. Spectral analysis further revealed that Sun-GY exhibits lower\nphonon group velocities and increased phonon scattering, mainly due to\ninteractions between acoustic and optical modes. Sun-GY presents an intrinsic\nthermal conductivity of approximately 24.6 W/mK, much lower than graphene,\nmaking it a promising candidate for applications that require materials with\nreduced thermal transport properties.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal conductivity of two-dimensional (2D) materials is critical in determining their suitability for several applications, from electronics to thermal management. In this study, we have used Molecular Dynamics (MD) simulations to investigate the thermal conductivity and phononic properties of 8-16-4(Sun)-Graphyne, a recently proposed 2D carbon allotrope. The thermal conductivity was estimated using reverse non-equilibrium MD simulations following the Muuller-Plathe approach, revealing a strong dependence on system size. Phonon dispersion calculations confirm the stability of Sun-GY while also showing a significant decrease in thermal conductivity compared to graphene. This decrease is attributed to acetylenic bonds, which enhance phonon scattering. Spectral analysis further revealed that Sun-GY exhibits lower phonon group velocities and increased phonon scattering, mainly due to interactions between acoustic and optical modes. Sun-GY presents an intrinsic thermal conductivity of approximately 24.6 W/mK, much lower than graphene, making it a promising candidate for applications that require materials with reduced thermal transport properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反向非平衡分子动力学模拟得出的太阳石墨烯晶格导热率
二维(2D)材料的热导率是决定其是否适用于从电子到热管理等多种应用的关键。在本研究中,我们利用分子动力学(MD)模拟研究了 8-16-4(Sun)-Graphyne(一种最近提出的二维碳同素异形体)的热导率和声波特性。根据 Muuller-Plathe 方法,利用反向非平衡 MD 模拟估算了热导率,结果表明热导率与系统大小有很大关系。声子色散计算证实了 Sun-GY 的稳定性,同时也表明其热导率比石墨烯显著降低。光谱分析进一步表明,Sun-GY 表现出较低的声子群速度和较高的声子散射,这主要是由于声学和光学模式之间的相互作用。Sun-GY 的本征热导率约为 24.6 W/mK,远低于石墨烯,这使它成为需要降低热传输特性材料的应用领域的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anionic disorder and its impact on the surface electronic structure of oxynitride photoactive semiconductors Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning Hybridization gap approaching the two-dimensional limit of topological insulator Bi$_x$Sb$_{1-x}$ Sampling Latent Material-Property Information From LLM-Derived Embedding Representations Smart Data-Driven GRU Predictor for SnO$_2$ Thin films Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1