Machine learning assisted screening of metal binary alloys for anode materials

Xingyue Shi, Linming Zhou, Yuhui Huang, Yongjun Wu, Zijian Hong
{"title":"Machine learning assisted screening of metal binary alloys for anode materials","authors":"Xingyue Shi, Linming Zhou, Yuhui Huang, Yongjun Wu, Zijian Hong","doi":"arxiv-2409.09583","DOIUrl":null,"url":null,"abstract":"In the dynamic and rapidly advancing battery field, alloy anode materials are\na focal point due to their superior electrochemical performance. Traditional\nscreening methods are inefficient and time-consuming. Our research introduces a\nmachine learning-assisted strategy to expedite the discovery and optimization\nof these materials. We compiled a vast dataset from the MP and AFLOW databases,\nencompassing tens of thousands of alloy compositions and properties. Utilizing\na CGCNN, we accurately predicted the potential and specific capacity of alloy\nanodes, validated against experimental data. This approach identified\napproximately 120 low potential and high specific capacity alloy anodes\nsuitable for various battery systems including Li, Na, K, Zn, Mg, Ca, and\nAl-based. Our method not only streamlines the screening of battery anode\nmaterials but also propels the advancement of battery material research and\ninnovation in energy storage technology.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the dynamic and rapidly advancing battery field, alloy anode materials are a focal point due to their superior electrochemical performance. Traditional screening methods are inefficient and time-consuming. Our research introduces a machine learning-assisted strategy to expedite the discovery and optimization of these materials. We compiled a vast dataset from the MP and AFLOW databases, encompassing tens of thousands of alloy compositions and properties. Utilizing a CGCNN, we accurately predicted the potential and specific capacity of alloy anodes, validated against experimental data. This approach identified approximately 120 low potential and high specific capacity alloy anodes suitable for various battery systems including Li, Na, K, Zn, Mg, Ca, and Al-based. Our method not only streamlines the screening of battery anode materials but also propels the advancement of battery material research and innovation in energy storage technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习辅助筛选金属二元合金阳极材料
在充满活力且飞速发展的电池领域,合金负极材料因其卓越的电化学性能而成为焦点。传统的筛选方法效率低、耗时长。我们的研究引入了机器学习辅助策略,以加快这些材料的发现和优化。我们从 MP 和 AFLOW 数据库中汇编了一个庞大的数据集,其中包含数以万计的合金成分和特性。利用 CGCNN,我们准确预测了合金阳极的电势和比容量,并根据实验数据进行了验证。这种方法确定了约 120 种适用于各种电池系统的低电位、高比容量合金阳极,包括锂基、镍基、钾基、锌基、镁基、钙基和铝基阳极。我们的方法不仅简化了电池阳极材料的筛选过程,还推动了电池材料研究和储能技术的创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anionic disorder and its impact on the surface electronic structure of oxynitride photoactive semiconductors Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning Hybridization gap approaching the two-dimensional limit of topological insulator Bi$_x$Sb$_{1-x}$ Sampling Latent Material-Property Information From LLM-Derived Embedding Representations Smart Data-Driven GRU Predictor for SnO$_2$ Thin films Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1