Tiron H. L. Jahinge, Vidumini S. Samarasiri, Tori Z. Forbes
{"title":"Water Networks within Metal Organic Nanotubes: Assessment of Techniques to Understand Structure and Properties.","authors":"Tiron H. L. Jahinge, Vidumini S. Samarasiri, Tori Z. Forbes","doi":"10.1002/ejic.202400327","DOIUrl":null,"url":null,"abstract":"<p>Hybrid materials, such as metal organic nanotubes (MONTs) can possess nanoconfined water molecules within their pore space and the overall behavior of the water within the material may be tuned based upon interactions with the inner channel walls. We have previously developed a range of methods (electron density mapping, kinetic models, and water interaction enthalpies) to evaluate water behavior under nanoconfinement using a uranium-based metal organic nanotube (<b>UMONT</b>) but have not explored their applicability across a range of materials. In the current study, we test our methodologies on two additional MONT materials (<b>LaMONT</b> and <b>Cu-LaMONT</b>) to determine if the techniques can be utilized in other systems to predict behavior within complex hybrid materials. In addition, we explored how to use Hirshfeld surface maps generated by the CrystalExplorer software in the visualization and prediction of water behavior within complex hybrid materials.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"27 33","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ejic.202400327","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ejic.202400327","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid materials, such as metal organic nanotubes (MONTs) can possess nanoconfined water molecules within their pore space and the overall behavior of the water within the material may be tuned based upon interactions with the inner channel walls. We have previously developed a range of methods (electron density mapping, kinetic models, and water interaction enthalpies) to evaluate water behavior under nanoconfinement using a uranium-based metal organic nanotube (UMONT) but have not explored their applicability across a range of materials. In the current study, we test our methodologies on two additional MONT materials (LaMONT and Cu-LaMONT) to determine if the techniques can be utilized in other systems to predict behavior within complex hybrid materials. In addition, we explored how to use Hirshfeld surface maps generated by the CrystalExplorer software in the visualization and prediction of water behavior within complex hybrid materials.
期刊介绍:
The European Journal of Inorganic Chemistry (2019 ISI Impact Factor: 2.529) publishes Full Papers, Communications, and Minireviews from the entire spectrum of inorganic, organometallic, bioinorganic, and solid-state chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
The following journals have been merged to form the two leading journals, European Journal of Inorganic Chemistry and European Journal of Organic Chemistry:
Chemische Berichte
Bulletin des Sociétés Chimiques Belges
Bulletin de la Société Chimique de France
Gazzetta Chimica Italiana
Recueil des Travaux Chimiques des Pays-Bas
Anales de Química
Chimika Chronika
Revista Portuguesa de Química
ACH—Models in Chemistry
Polish Journal of Chemistry
The European Journal of Inorganic Chemistry continues to keep you up-to-date with important inorganic chemistry research results.