Vidumini Suchintha Samarasiri, Tiron Jahinge, Tori Forbes
{"title":"Water Networks within Metal Organic Nanotubes: Assessment of Techniques to Understand Structure and Properties","authors":"Vidumini Suchintha Samarasiri, Tiron Jahinge, Tori Forbes","doi":"10.1002/ejic.202400327","DOIUrl":null,"url":null,"abstract":"Hybrid materials, such as metal organic nanotubes (MONTs) can possess nanoconfined water molecules within their pore space and the overall behavior of the water within the material may be tuned based upon interactions with the inner channel walls. We have previously developed a range of methods (electron density mapping, kinetic models, and water interaction enthalpies) to evaluate water behavior under nanoconfinement using a uranium-based metal organic nanotube (UMONT) but have not explored their applicability across a range of materials. In the current study, we test our methodologies on two additional MONT materials (LaMONT and Cu-LaMONT) to determine if the techniques can be utilized in other systems to predict behavior within complex hybrid materials. In addition, we explored how to use Hirshfeld surface maps generated by the CrystalExplorer software in the visualization and prediction of water behavior within complex hybrid materials.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/ejic.202400327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid materials, such as metal organic nanotubes (MONTs) can possess nanoconfined water molecules within their pore space and the overall behavior of the water within the material may be tuned based upon interactions with the inner channel walls. We have previously developed a range of methods (electron density mapping, kinetic models, and water interaction enthalpies) to evaluate water behavior under nanoconfinement using a uranium-based metal organic nanotube (UMONT) but have not explored their applicability across a range of materials. In the current study, we test our methodologies on two additional MONT materials (LaMONT and Cu-LaMONT) to determine if the techniques can be utilized in other systems to predict behavior within complex hybrid materials. In addition, we explored how to use Hirshfeld surface maps generated by the CrystalExplorer software in the visualization and prediction of water behavior within complex hybrid materials.