The Factuality of Large Language Models in the Legal Domain

Rajaa El Hamdani, Thomas Bonald, Fragkiskos Malliaros, Nils Holzenberger, Fabian Suchanek
{"title":"The Factuality of Large Language Models in the Legal Domain","authors":"Rajaa El Hamdani, Thomas Bonald, Fragkiskos Malliaros, Nils Holzenberger, Fabian Suchanek","doi":"arxiv-2409.11798","DOIUrl":null,"url":null,"abstract":"This paper investigates the factuality of large language models (LLMs) as\nknowledge bases in the legal domain, in a realistic usage scenario: we allow\nfor acceptable variations in the answer, and let the model abstain from\nanswering when uncertain. First, we design a dataset of diverse factual\nquestions about case law and legislation. We then use the dataset to evaluate\nseveral LLMs under different evaluation methods, including exact, alias, and\nfuzzy matching. Our results show that the performance improves significantly\nunder the alias and fuzzy matching methods. Further, we explore the impact of\nabstaining and in-context examples, finding that both strategies enhance\nprecision. Finally, we demonstrate that additional pre-training on legal\ndocuments, as seen with SaulLM, further improves factual precision from 63% to\n81%.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the factuality of large language models (LLMs) as knowledge bases in the legal domain, in a realistic usage scenario: we allow for acceptable variations in the answer, and let the model abstain from answering when uncertain. First, we design a dataset of diverse factual questions about case law and legislation. We then use the dataset to evaluate several LLMs under different evaluation methods, including exact, alias, and fuzzy matching. Our results show that the performance improves significantly under the alias and fuzzy matching methods. Further, we explore the impact of abstaining and in-context examples, finding that both strategies enhance precision. Finally, we demonstrate that additional pre-training on legal documents, as seen with SaulLM, further improves factual precision from 63% to 81%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
法律领域大型语言模型的事实性
本文在现实使用场景中研究了法律领域大型语言模型(LLMs)知识库的事实性问题:我们允许答案有可接受的变化,并让模型在不确定时放弃回答。首先,我们设计了一个关于判例法和立法的各种事实问题的数据集。然后,我们使用该数据集评估了不同评估方法下的几种 LLM,包括精确匹配、别名匹配和模糊匹配。结果表明,在别名匹配和模糊匹配方法下,LLM 的性能有了显著提高。此外,我们还探讨了保留示例和上下文示例的影响,发现这两种策略都能提高精确度。最后,我们证明了在 SaulLM 的基础上对法律文件进行额外的预训练可以进一步提高事实精确度,从 63% 提高到 81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1