Promptriever: Instruction-Trained Retrievers Can Be Prompted Like Language Models

Orion Weller, Benjamin Van Durme, Dawn Lawrie, Ashwin Paranjape, Yuhao Zhang, Jack Hessel
{"title":"Promptriever: Instruction-Trained Retrievers Can Be Prompted Like Language Models","authors":"Orion Weller, Benjamin Van Durme, Dawn Lawrie, Ashwin Paranjape, Yuhao Zhang, Jack Hessel","doi":"arxiv-2409.11136","DOIUrl":null,"url":null,"abstract":"Instruction-tuned language models (LM) are able to respond to imperative\ncommands, providing a more natural user interface compared to their base\ncounterparts. In this work, we present Promptriever, the first retrieval model\nable to be prompted like an LM. To train Promptriever, we curate and release a\nnew instance-level instruction training set from MS MARCO, spanning nearly 500k\ninstances. Promptriever not only achieves strong performance on standard\nretrieval tasks, but also follows instructions. We observe: (1) large gains\n(reaching SoTA) on following detailed relevance instructions (+14.3 p-MRR /\n+3.1 nDCG on FollowIR), (2) significantly increased robustness to lexical\nchoices/phrasing in the query+instruction (+12.9 Robustness@10 on InstructIR),\nand (3) the ability to perform hyperparameter search via prompting to reliably\nimprove retrieval performance (+1.4 average increase on BEIR). Promptriever\ndemonstrates that retrieval models can be controlled with prompts on a\nper-query basis, setting the stage for future work aligning LM prompting\ntechniques with information retrieval.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Instruction-tuned language models (LM) are able to respond to imperative commands, providing a more natural user interface compared to their base counterparts. In this work, we present Promptriever, the first retrieval model able to be prompted like an LM. To train Promptriever, we curate and release a new instance-level instruction training set from MS MARCO, spanning nearly 500k instances. Promptriever not only achieves strong performance on standard retrieval tasks, but also follows instructions. We observe: (1) large gains (reaching SoTA) on following detailed relevance instructions (+14.3 p-MRR / +3.1 nDCG on FollowIR), (2) significantly increased robustness to lexical choices/phrasing in the query+instruction (+12.9 Robustness@10 on InstructIR), and (3) the ability to perform hyperparameter search via prompting to reliably improve retrieval performance (+1.4 average increase on BEIR). Promptriever demonstrates that retrieval models can be controlled with prompts on a per-query basis, setting the stage for future work aligning LM prompting techniques with information retrieval.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Promptriever:经过指令训练的检索器可以像语言模型一样接受提示
经过指令调整的语言模型(LM)能够响应指令性命令,从而提供比基本模型更自然的用户界面。在这项工作中,我们提出了 Promptriever,它是第一个可以像 LM 一样进行提示的检索模型。为了训练 Promptriever,我们从 MS MARCO 收集并发布了一个新的实例级指令训练集,涵盖近 500 个实例。Promptriever 不仅在标准检索任务中表现出色,而且还能按照指令进行检索。我们观察到:(1) 在遵循详细的相关性指令方面取得了巨大进步(达到 SoTA)(FollowIR 上+14.3 p-MRR /+3.1 nDCG),(2) 对查询+指令中的词性选择/措辞的鲁棒性显著提高(InstructIR 上+12.9 Robustness@10),(3) 通过提示执行超参数搜索的能力可靠地提高了检索性能(BEIR 上+1.4 平均增长)。Promptriever 演示了检索模型可以在每次查询的基础上通过提示进行控制,为今后将 LM 提示技术与信息检索相结合的工作奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1