Electronic and Thermoelectric Properties in SnS-Nanoribbon-Based Heterojunctions

IF 3.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Chinese Physics Letters Pub Date : 2024-08-31 DOI:10.1088/0256-307x/41/9/097301
Kai-Bo Zhang, 凯波 张, Shi-Hua Tan, 仕华 谭, Xiao-Fang Peng, 小芳 彭, Meng-Qiu Long and 孟秋 龙
{"title":"Electronic and Thermoelectric Properties in SnS-Nanoribbon-Based Heterojunctions","authors":"Kai-Bo Zhang, 凯波 张, Shi-Hua Tan, 仕华 谭, Xiao-Fang Peng, 小芳 彭, Meng-Qiu Long and 孟秋 龙","doi":"10.1088/0256-307x/41/9/097301","DOIUrl":null,"url":null,"abstract":"As an earth-abundant and environmentally friendly material, tin sulfide (SnS) is not only a high-performance photovoltaic material, but also a new promising thermoelectric material. Despite extensive research on the thermoelectric properties of this material in recent years, the room-temperature thermoelectric figure of merit (ZT) of SnS has not been broke through 2 [2022 Sci. China Mater.65 1143]. In this work, based on a combination of density functional theory and non-equilibrium Green’s function method, the electronic and thermoelectric properties in SnS-nanoribbon-based heterojunctions are studied. The results show that although SnS nanoribbons (SNSNRs) with zigzag edges (ZSNSNRs) and armchair edges (ASNSNRs) both have semiconductor properties, the bandgaps of ASNSNRs are much wider than those of ZSNSNRs, which induces much wider conductance gaps of N-ASNSNR (N is the number of tin-sulfide lines across the ribbon width)). In the positive energy region, the ZT peaks of L-SNS-Au are much larger than those of L-SNS-GNR (L represents the number of longitudinal repeating units of SNSNR in the scattering region). While in the positive energy region, the ZT peaks of L-SNS-GNR are larger than those of L-SNS-Au. Further calculations reveal that the figure of merit will be over 3.7 in L-SNS-Au and 2.2 in L-SNS-GNR at room temperature, and over 4 in L-SNS-Au and 2.6 in L-SNS-GNR at 500 K.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"32 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/0256-307x/41/9/097301","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As an earth-abundant and environmentally friendly material, tin sulfide (SnS) is not only a high-performance photovoltaic material, but also a new promising thermoelectric material. Despite extensive research on the thermoelectric properties of this material in recent years, the room-temperature thermoelectric figure of merit (ZT) of SnS has not been broke through 2 [2022 Sci. China Mater.65 1143]. In this work, based on a combination of density functional theory and non-equilibrium Green’s function method, the electronic and thermoelectric properties in SnS-nanoribbon-based heterojunctions are studied. The results show that although SnS nanoribbons (SNSNRs) with zigzag edges (ZSNSNRs) and armchair edges (ASNSNRs) both have semiconductor properties, the bandgaps of ASNSNRs are much wider than those of ZSNSNRs, which induces much wider conductance gaps of N-ASNSNR (N is the number of tin-sulfide lines across the ribbon width)). In the positive energy region, the ZT peaks of L-SNS-Au are much larger than those of L-SNS-GNR (L represents the number of longitudinal repeating units of SNSNR in the scattering region). While in the positive energy region, the ZT peaks of L-SNS-GNR are larger than those of L-SNS-Au. Further calculations reveal that the figure of merit will be over 3.7 in L-SNS-Au and 2.2 in L-SNS-GNR at room temperature, and over 4 in L-SNS-Au and 2.6 in L-SNS-GNR at 500 K.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 SnS-Nanoribon-Bon 的异质结的电子和热电特性
硫化锡(SnS)作为一种富集于地球的环保材料,不仅是一种高性能的光伏材料,也是一种极具发展前景的新型热电材料。尽管近年来对该材料的热电性能进行了大量研究,但硫化锡的室温热电性能(ZT)仍未突破 2 [2022 中国材料科学.65 1143]。本文基于密度泛函理论和非平衡格林函数法,研究了SnS-纳米带异质结的电子和热电性能。研究结果表明,虽然具有人字形边(ZSNSNR)和扶手椅边(ASNSNR)的 SnS 纳米带(SNSNR)都具有半导体特性,但 ASNSNR 的带隙比 ZSNSNR 的带隙宽得多,从而导致 N-ASNSNR 的电导隙更宽(N 为带宽上的硫化锡线数)。在正能量区,L-SNS-Au 的 ZT 峰值远大于 L-SNS-GNR(L 代表散射区中 SNSNR 的纵向重复单元数)。而在正能量区,L-SNS-GNR 的 ZT 峰值大于 L-SNS-Au。进一步的计算显示,在室温下,L-SNS-Au 和 L-SNS-GNR 的功勋值分别超过 3.7 和 2.2,在 500 K 时,L-SNS-Au 和 L-SNS-GNR 的功勋值分别超过 4 和 2.6。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Physics Letters
Chinese Physics Letters 物理-物理:综合
CiteScore
5.90
自引率
8.60%
发文量
13238
审稿时长
4 months
期刊介绍: Chinese Physics Letters provides rapid publication of short reports and important research in all fields of physics and is published by the Chinese Physical Society and hosted online by IOP Publishing.
期刊最新文献
Dual MAPK Inhibition Triggers Pro-inflammatory Signals and Sensitizes BRAF V600E Glioma to T Cell-Mediated Checkpoint Therapy. Simulating a Chern Insulator with C = ±2 on Synthetic Floquet Lattice Rydberg-Induced Topological Solitons in Three-Dimensional Rotation Spin–Orbit-Coupled Bose–Einstein Condensates Multiple Soliton Asymptotics in a Spin-1 Bose–Einstein Condensate Pc(4457) Interpreted as a JP = 1/2+ State by D¯0Λc+(2595) – π0Pc(4312)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1