{"title":"The Regulation of Cerebral Lymphatic Drainage in the Transverse Sinus Region of the Mouse Brain","authors":"Zengjun Xie, Zhihui He, Zhen Yuan, Miao Wang, Feifan Zhou","doi":"10.1002/jbio.202400250","DOIUrl":null,"url":null,"abstract":"Cerebral lymphatic drainage is an important pathway for metabolic waste clearance in the brain, which plays a crucial role in the progression of central nervous system diseases. Recent studies have shown that norepinephrine (NE) is involved in the regulation of cerebral lymphatic drainage function, but the modulation mechanism remains unknown. In this study, we confirmed that NE rapidly reduced glymphatic influx and enhanced meningeal lymphatic clearance. Moreover, the transverse sinus (TS) was the vital region of cerebral lymphatic drainage regulation by NE. Further analysis revealed that NE inhibition could simultaneously enhance glymphatic drainage and dorsal meningeal lymphatic drainage, mainly acting on the TS region. This study demonstrated that the cerebral lymphatic drainage system can be regulated by NE, with the TS region serving as the primary modulating site. The findings provide a potential regulatory target for the amelioration of neurological diseases associated with cerebral lymphatic drainage function.","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/jbio.202400250","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Cerebral lymphatic drainage is an important pathway for metabolic waste clearance in the brain, which plays a crucial role in the progression of central nervous system diseases. Recent studies have shown that norepinephrine (NE) is involved in the regulation of cerebral lymphatic drainage function, but the modulation mechanism remains unknown. In this study, we confirmed that NE rapidly reduced glymphatic influx and enhanced meningeal lymphatic clearance. Moreover, the transverse sinus (TS) was the vital region of cerebral lymphatic drainage regulation by NE. Further analysis revealed that NE inhibition could simultaneously enhance glymphatic drainage and dorsal meningeal lymphatic drainage, mainly acting on the TS region. This study demonstrated that the cerebral lymphatic drainage system can be regulated by NE, with the TS region serving as the primary modulating site. The findings provide a potential regulatory target for the amelioration of neurological diseases associated with cerebral lymphatic drainage function.
脑淋巴引流是清除脑内代谢废物的重要途径,在中枢神经系统疾病的进展中起着至关重要的作用。最近的研究表明,去甲肾上腺素(NE)参与了脑淋巴引流功能的调节,但其调节机制尚不清楚。在本研究中,我们证实 NE 能迅速减少脑淋巴液的流入,并增强脑膜淋巴液的清除。此外,横窦(TS)是 NE 调节脑淋巴引流的重要区域。进一步的分析表明,抑制 NE 可同时增强甘液引流和背侧脑膜淋巴引流,主要作用于 TS 区域。这项研究表明,脑淋巴引流系统可受 NE 调节,而 TS 区是主要的调节部位。这些发现为改善与脑淋巴引流功能相关的神经系统疾病提供了潜在的调节靶点。
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.