Zhengbin Pan, Wei Dang, Yiting Xiao, Haotong Xin, Bo Kong
{"title":"Synthesis of uniform spherical silver powder without dispersants in a confined impinging-jet reactor","authors":"Zhengbin Pan, Wei Dang, Yiting Xiao, Haotong Xin, Bo Kong","doi":"10.1016/j.cherd.2024.09.019","DOIUrl":null,"url":null,"abstract":"<div><p>Sliver powder is the most common and extensively utilized precious metal powder in electronics, primarily for electronic paste. Herein, micron-sized spherical silver powder was synthesized via a liquid phase reduction method employing silver nitrate as the source of silver and ascorbic acid as the reducing agent in a confined impinging jet reactor (CIJR). The impact of the molar ratio between silver nitrate and ascorbic acid, the flow rate, and the temperature on the particle size of silver powder was investigated. The optimal process conditions for silver powder are as follows: maintain a molar ratio of 1:1 and control the feeding rate at 10 ml/min while operating at 50 ° C. The confined impinging jet reactor offers enhanced control over reaction conditions during the synthesis of silver powder, surpassing the capabilities of traditional batch reactors. The aforementioned optimized methodology was employed to successfully synthesize uniform and spherical silver powder (with an aspect ratio approaching 1) in the low Reynolds number jet, resulting in an average particle size of d<sub>50</sub> = 0.83 μm and a standard deviation of 0.07, without the addition of dispersant. The synthesis method presented here improves the performance of silver powder, simplifies the production process, reduces energy consumption, and minimizes waste generation. These advances yield significant environmental and economic benefits. In the future, with the continuous development and optimization of microreactor technology, this synthesis method is anticipated to play a more prominent role in the commercial-scale production and application of micrometer-sized silver powder.</p></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"210 ","pages":"Pages 531-542"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224005495","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sliver powder is the most common and extensively utilized precious metal powder in electronics, primarily for electronic paste. Herein, micron-sized spherical silver powder was synthesized via a liquid phase reduction method employing silver nitrate as the source of silver and ascorbic acid as the reducing agent in a confined impinging jet reactor (CIJR). The impact of the molar ratio between silver nitrate and ascorbic acid, the flow rate, and the temperature on the particle size of silver powder was investigated. The optimal process conditions for silver powder are as follows: maintain a molar ratio of 1:1 and control the feeding rate at 10 ml/min while operating at 50 ° C. The confined impinging jet reactor offers enhanced control over reaction conditions during the synthesis of silver powder, surpassing the capabilities of traditional batch reactors. The aforementioned optimized methodology was employed to successfully synthesize uniform and spherical silver powder (with an aspect ratio approaching 1) in the low Reynolds number jet, resulting in an average particle size of d50 = 0.83 μm and a standard deviation of 0.07, without the addition of dispersant. The synthesis method presented here improves the performance of silver powder, simplifies the production process, reduces energy consumption, and minimizes waste generation. These advances yield significant environmental and economic benefits. In the future, with the continuous development and optimization of microreactor technology, this synthesis method is anticipated to play a more prominent role in the commercial-scale production and application of micrometer-sized silver powder.
期刊介绍:
ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering.
Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.