Preparation of high-purity magnesia spinel refractory raw materials with spinel-wrapped periclase structures using bischofite from salt lake

IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Environmental Chemical Engineering Pub Date : 2024-09-16 DOI:10.1016/j.jece.2024.114149
{"title":"Preparation of high-purity magnesia spinel refractory raw materials with spinel-wrapped periclase structures using bischofite from salt lake","authors":"","doi":"10.1016/j.jece.2024.114149","DOIUrl":null,"url":null,"abstract":"<div><p>A large amount of bischofite is produced in the process of potassium extraction from salt lake, which seriously affects the ionic balance of brine system. In this study, a high-purity magnesia spinel refractory raw material with a spinel-wrapped periclase structure was directly prepared using bischofite by a precipitation-sintering approach. A coupling process of one-time crude magnesium chloride solution recrystallization and three-time precipitates washing was employed to remove crucial impurities (sodium, potassium, boron, etc.) and prepare the magnesium hydroxide precipitates with a high purity of 99.37 %. The lightly calcined magnesia gained from the high-purity magnesium hydroxide precipitates and white corundum were then employed for preparing the refractory raw materials. The effects of particle size and dosage of white corundum on the phase distribution, microstructure, and physical properties of the materials were thoroughly studied. The results illustrated that the prepared refractory raw materials were mainly composed of periclase and spinel phases, showing a distinct spinel-wrapped periclase structure that could enhance the physical properties. Therefore, the prepared refractory raw materials showed a high bulk density of 3.46 g·cm<sup>−3</sup>, a low apparent porosity of 2.46 %, and a linear shrinkage rate of 12.33 %, under the optimum conditions of white corundum particle size of 3.00 μm and alumina/magnesia mass ratio of 3:10.</p></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724022802","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A large amount of bischofite is produced in the process of potassium extraction from salt lake, which seriously affects the ionic balance of brine system. In this study, a high-purity magnesia spinel refractory raw material with a spinel-wrapped periclase structure was directly prepared using bischofite by a precipitation-sintering approach. A coupling process of one-time crude magnesium chloride solution recrystallization and three-time precipitates washing was employed to remove crucial impurities (sodium, potassium, boron, etc.) and prepare the magnesium hydroxide precipitates with a high purity of 99.37 %. The lightly calcined magnesia gained from the high-purity magnesium hydroxide precipitates and white corundum were then employed for preparing the refractory raw materials. The effects of particle size and dosage of white corundum on the phase distribution, microstructure, and physical properties of the materials were thoroughly studied. The results illustrated that the prepared refractory raw materials were mainly composed of periclase and spinel phases, showing a distinct spinel-wrapped periclase structure that could enhance the physical properties. Therefore, the prepared refractory raw materials showed a high bulk density of 3.46 g·cm−3, a low apparent porosity of 2.46 %, and a linear shrinkage rate of 12.33 %, under the optimum conditions of white corundum particle size of 3.00 μm and alumina/magnesia mass ratio of 3:10.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用盐湖中的双长石制备具有尖晶石包裹包晶结构的高纯度氧化镁尖晶石耐火原料
盐湖提钾过程中会产生大量的双长石,严重影响盐水系统的离子平衡。本研究采用沉淀-烧结方法,利用双超闪石直接制备了具有尖晶石包裹包晶结构的高纯菱镁尖晶石耐火原料。采用一次粗氯化镁溶液重结晶和三次沉淀物洗涤的耦合工艺去除关键杂质(钠、钾、硼等),制备出纯度高达 99.37 % 的氢氧化镁沉淀物。从高纯度氢氧化镁沉淀中得到的轻煅烧氧化镁和白刚玉随后被用于制备耐火材料原料。对白刚玉的粒度和用量对材料的相分布、微观结构和物理性质的影响进行了深入研究。结果表明,所制备的耐火原料主要由包晶和尖晶石相组成,并呈现出明显的尖晶石包裹包晶结构,从而提高了耐火原料的物理性能。因此,在白刚玉粒度为 3.00 μm 和氧化铝/氧化镁质量比为 3:10 的最佳条件下,制备的耐火原料显示出较高的体积密度(3.46 g-cm-3)、较低的表观孔隙率(2.46 %)和线性收缩率(12.33 %)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Environmental Chemical Engineering
Journal of Environmental Chemical Engineering Environmental Science-Pollution
CiteScore
11.40
自引率
6.50%
发文量
2017
审稿时长
27 days
期刊介绍: The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.
期刊最新文献
Advances in the application of graphene oxide composite loose nanofiltration membranes for dye and salt separation Neutralizing the threat: A comprehensive review of chemical warfare agent decontamination strategies Synthesis of bifunctional copolymeric nanofibers with selective extracting U(VI) from the solution and antibacterial property Non-radical activation of peracetic acid by Fe-Co sulfide modified activated carbon for the degradation of refractory organic matter Better waste utilization: Mg-modified biochar from wetland plant waste for phosphorus removal and carbon sequestration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1