Tingting Wang , Xinxi Fu , Yonghua Chen , Jingdong Wu , Yuanyuan Wang , Honghai Wan , Xiangyu Li , Lizhen Zhao
{"title":"Better waste utilization: Mg-modified biochar from wetland plant waste for phosphorus removal and carbon sequestration","authors":"Tingting Wang , Xinxi Fu , Yonghua Chen , Jingdong Wu , Yuanyuan Wang , Honghai Wan , Xiangyu Li , Lizhen Zhao","doi":"10.1016/j.jece.2024.114264","DOIUrl":null,"url":null,"abstract":"<div><div>Withered wetland plants have become a treat to water ecological security. To address the issue of waste biomass disposal, a typical wetland plant, <em>Hydrocotyle vulgaris</em>, was utilized to produce Mg-modified biochar (MBC) for efficient phosphorus (P) removal and stable carbon sequestration. The adsorption behavior fit Langmuir isotherm and the pseudo second-order kinetic models, which revealed the nature of monolayer chemical adsorption of MBC. The removal of P was achieved through physical diffusion, Mg<sup>2+</sup> precipitates, surface complexation and electrostatic attraction. Based on the analysis of thermodynamics models, it can be concluded that the adsorption behavior of P by MBC was spontaneous and endothermic. The MBC exhibited a maximum phosphorus adsorption capacity of 314.048 mg/g. Concurrently, the specific surface area was enhanced from 529.974 m<sup>2</sup>/g to 931.019 m<sup>2</sup>/g. The research has also recorded valuable data about the carbon sequestration potential of MBC with the carbon content reaching 0.51 g per g of biochar. It was found from the outcomes that Mg-modified biochar had outstanding carbon sequestration potential and significantly improved P removal efficiency.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114264"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724023959","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Withered wetland plants have become a treat to water ecological security. To address the issue of waste biomass disposal, a typical wetland plant, Hydrocotyle vulgaris, was utilized to produce Mg-modified biochar (MBC) for efficient phosphorus (P) removal and stable carbon sequestration. The adsorption behavior fit Langmuir isotherm and the pseudo second-order kinetic models, which revealed the nature of monolayer chemical adsorption of MBC. The removal of P was achieved through physical diffusion, Mg2+ precipitates, surface complexation and electrostatic attraction. Based on the analysis of thermodynamics models, it can be concluded that the adsorption behavior of P by MBC was spontaneous and endothermic. The MBC exhibited a maximum phosphorus adsorption capacity of 314.048 mg/g. Concurrently, the specific surface area was enhanced from 529.974 m2/g to 931.019 m2/g. The research has also recorded valuable data about the carbon sequestration potential of MBC with the carbon content reaching 0.51 g per g of biochar. It was found from the outcomes that Mg-modified biochar had outstanding carbon sequestration potential and significantly improved P removal efficiency.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.