Koki Kitabayashi , Junji Hyodo , Nai Shi , Yoshihiro Yamazaki
{"title":"Quantitative assessment of enhanced performance of Ru-loaded direct ammonia proton ceramic fuel cells","authors":"Koki Kitabayashi , Junji Hyodo , Nai Shi , Yoshihiro Yamazaki","doi":"10.1016/j.ssi.2024.116701","DOIUrl":null,"url":null,"abstract":"<div><p>Liquid ammonia is an attractive candidate for use as a hydrogen carrier because of its high volumetric density. The successful development of direct ammonia proton-conducting ceramic fuel cells (PCFCs) operating at intermediate temperatures can be seamlessly integrated into the current infrastructure without the need for investing in hydrogen gas pipelines and storage facilities. However, the low power output of PCFCs using ammonia fuel hinders their practical applications. In this study, we systematically investigated the ammonia conversion ratio and rate, maximum power density, open-circuit voltage, and ohmic and polarization resistances of PCFCs (Ni-BaCe<sub>0.7</sub>Zr<sub>0.1</sub>Y<sub>0.1</sub>Yb<sub>0.1</sub>O<sub>3−δ</sub> |BaCe<sub>0.7</sub>Zr<sub>0.1</sub>Y<sub>0.1</sub>Yb<sub>0.1</sub>O<sub>3−δ</sub>| PrBaCo<sub>2</sub>O<sub>5+δ</sub>) for ammonia and hydrogen fuels at intermediate temperatures of 500–650 °C and quantitatively assessed the impact of Ru catalyst loading on the electrochemical performance of direct ammonia PCFC. Ru loading improved the maximum power density of the direct ammonia PCFC from 100 to 149 mWcm<sup>−2</sup> at 500 °C. Combined analysis of gas chromatography and AC impedance spectroscopy revealed that Ru catalysts improved the internal ammonia reforming rate by a factor of 1.9 at 500 °C and reduced polarization resistance by a factor of 1.4 at 500 °C. All results consistently support that the enhanced maximum power density of the direct ammonia PCFC is predominantly attributed to the improved electrochemical reaction kinetics at the electrode/electrolyte/gas interface.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"417 ","pages":"Article 116701"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002492","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid ammonia is an attractive candidate for use as a hydrogen carrier because of its high volumetric density. The successful development of direct ammonia proton-conducting ceramic fuel cells (PCFCs) operating at intermediate temperatures can be seamlessly integrated into the current infrastructure without the need for investing in hydrogen gas pipelines and storage facilities. However, the low power output of PCFCs using ammonia fuel hinders their practical applications. In this study, we systematically investigated the ammonia conversion ratio and rate, maximum power density, open-circuit voltage, and ohmic and polarization resistances of PCFCs (Ni-BaCe0.7Zr0.1Y0.1Yb0.1O3−δ |BaCe0.7Zr0.1Y0.1Yb0.1O3−δ| PrBaCo2O5+δ) for ammonia and hydrogen fuels at intermediate temperatures of 500–650 °C and quantitatively assessed the impact of Ru catalyst loading on the electrochemical performance of direct ammonia PCFC. Ru loading improved the maximum power density of the direct ammonia PCFC from 100 to 149 mWcm−2 at 500 °C. Combined analysis of gas chromatography and AC impedance spectroscopy revealed that Ru catalysts improved the internal ammonia reforming rate by a factor of 1.9 at 500 °C and reduced polarization resistance by a factor of 1.4 at 500 °C. All results consistently support that the enhanced maximum power density of the direct ammonia PCFC is predominantly attributed to the improved electrochemical reaction kinetics at the electrode/electrolyte/gas interface.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.