Shun Lu , Pinliang Zhang , Qian Yu , Qiang Wu , Zizheng Gong , Menglong Liu
{"title":"Insight into wave propagation in polyimide films and resistive grid sandwich structures towards a hybrid monitoring of hypervelocity impact","authors":"Shun Lu , Pinliang Zhang , Qian Yu , Qiang Wu , Zizheng Gong , Menglong Liu","doi":"10.1016/j.ultras.2024.107471","DOIUrl":null,"url":null,"abstract":"<div><p>Micro-Meteoroid and Orbital Debris pose a significant threat to the safe operation of orbiting spacecraft, potentially leading to mission failure in space exploration. Quantitative characterization of hypervelocity impact (HVI) is crucial to ensure the safety and successful completion of on-orbit missions. Firstly, this study designed a three-layer sandwich structure of polyimide film with orthogonally laid resistive wires, combined with piezoelectric and resistive wire sensors, for the simultaneous acquisition of acoustic emission (AE) signals generated by HVI and measurement of perforation dimensions. Secondly, a semi-analytical finite element (SAFE) analysis of wave dispersion properties in the periodic sandwich structure is conducted with Bloch’s theorem, together with a hybrid model based on three-dimensional smoothed particle hydrodynamics and finite element methods (SPH-FEM) to comprehensively understand the AE waves and damage characteristics induced by HVI. The resulting anisotropic wave propagation characteristics with SAFE and SPH-FEM are closely matched. Thirdly, a time delay-multiplication (TDM) imaging algorithm considering wave velocity anisotropy is proposed for accurate real-time “visualization” of HVI locations. Lastly, correlations are established between projectile and perforation dimensions. The proposed algorithm for HVI multi-parameter quantification and damage detection helps evaluate the space HVI environment and HVI-induced damage to spacecraft.</p></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X24002348","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Micro-Meteoroid and Orbital Debris pose a significant threat to the safe operation of orbiting spacecraft, potentially leading to mission failure in space exploration. Quantitative characterization of hypervelocity impact (HVI) is crucial to ensure the safety and successful completion of on-orbit missions. Firstly, this study designed a three-layer sandwich structure of polyimide film with orthogonally laid resistive wires, combined with piezoelectric and resistive wire sensors, for the simultaneous acquisition of acoustic emission (AE) signals generated by HVI and measurement of perforation dimensions. Secondly, a semi-analytical finite element (SAFE) analysis of wave dispersion properties in the periodic sandwich structure is conducted with Bloch’s theorem, together with a hybrid model based on three-dimensional smoothed particle hydrodynamics and finite element methods (SPH-FEM) to comprehensively understand the AE waves and damage characteristics induced by HVI. The resulting anisotropic wave propagation characteristics with SAFE and SPH-FEM are closely matched. Thirdly, a time delay-multiplication (TDM) imaging algorithm considering wave velocity anisotropy is proposed for accurate real-time “visualization” of HVI locations. Lastly, correlations are established between projectile and perforation dimensions. The proposed algorithm for HVI multi-parameter quantification and damage detection helps evaluate the space HVI environment and HVI-induced damage to spacecraft.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.