{"title":"New training simulator for lumbar puncture base on magnetorheological","authors":"","doi":"10.1016/j.medengphy.2024.104240","DOIUrl":null,"url":null,"abstract":"<div><p>In response to the difficulties in accurately reproducing the resistance drop generated by puncturing key tissue layers with a needle and the poor experience in existing simulators, based on the continuous controllability and rapid response of magnetorheological fluid under the influence of a magnetic field, this paper proposes a lumbar puncture training simulator(LPTS) that can accurately simulate the puncture feedback force within tissues such as the skin, subcutaneous fat, and supraspinous ligament throughout the entire process. By using a dual rod structure and reasonably arranging the damping channel gap, the influence of mechanical friction and zero-field damping force on the feedback force during tissue progression is minimized. This paper introduces the acquisition and modeling analysis of raw data, and based on this, the design, simulation, and mechanical testing of the simulator are carried out. Finally, a performance testing platform for the simulator is established to evaluate its tracking performance of the expected puncture strength and the reproducibility of the puncture sensation. The results show that the experimental puncture strength deviates from the expected puncture strength by 0.35 N to 0.61 N in the crucial steps of breaking through the supraspinous ligament, interspinous ligament, ligamentum flavum, and dura mater, with a relative error below 10 %.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324001413","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the difficulties in accurately reproducing the resistance drop generated by puncturing key tissue layers with a needle and the poor experience in existing simulators, based on the continuous controllability and rapid response of magnetorheological fluid under the influence of a magnetic field, this paper proposes a lumbar puncture training simulator(LPTS) that can accurately simulate the puncture feedback force within tissues such as the skin, subcutaneous fat, and supraspinous ligament throughout the entire process. By using a dual rod structure and reasonably arranging the damping channel gap, the influence of mechanical friction and zero-field damping force on the feedback force during tissue progression is minimized. This paper introduces the acquisition and modeling analysis of raw data, and based on this, the design, simulation, and mechanical testing of the simulator are carried out. Finally, a performance testing platform for the simulator is established to evaluate its tracking performance of the expected puncture strength and the reproducibility of the puncture sensation. The results show that the experimental puncture strength deviates from the expected puncture strength by 0.35 N to 0.61 N in the crucial steps of breaking through the supraspinous ligament, interspinous ligament, ligamentum flavum, and dura mater, with a relative error below 10 %.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.