The value of non-enhanced CT 3D visualization in differentiating stage Ⅰ invasive lung adenocarcinoma between LPA and non-LPA

IF 1.8 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Journal of Radiology Open Pub Date : 2024-09-21 DOI:10.1016/j.ejro.2024.100600
Jinxin Chen, Xinyi Zeng, Feng Li, Jidong Peng
{"title":"The value of non-enhanced CT 3D visualization in differentiating stage Ⅰ invasive lung adenocarcinoma between LPA and non-LPA","authors":"Jinxin Chen,&nbsp;Xinyi Zeng,&nbsp;Feng Li,&nbsp;Jidong Peng","doi":"10.1016/j.ejro.2024.100600","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>This study aims to analyze the quantitative parameters and morphological indices of three-dimensional (3D) visualization to differentiate lepidic predominant adenocarcinoma (LPA) from non-LPA subtypes, which include acinar predominant adenocarcinoma (APA), papillary predominant adenocarcinoma (PPA), micropapillary predominant adenocarcinoma (MPA), and solid predominant adenocarcinoma (SPA).</p></div><div><h3>Methods</h3><p>A group of 178 individuals diagnosed with lung adenocarcinoma were chosen and categorized into two groups: the LPA group and the non-LPA group, according to their pathological results. Quantitative parameters and morphological indexes such as 3D volume, solid proportion, and vascular cluster sign were obtained using 3D visualization and reconstruction techniques.</p></div><div><h3>Results</h3><p>Significant differences were observed in the vascular cluster sign, spiculation, shape, air bronchogram, bubble-like lucency, margin, pleural indentation, lobulation, maximum tumor diameter, 3D mean CT value, 3D volume, 3D mass, 3D density, and solid proportion between two groups (P&lt;0.05). The optimal cut-off values for diagnosing non-LPA were a 3D mean CT value of −445.45 HU, a 3D density of 0.56 mg·mm<sup>−3</sup>, and a solid proportion reaching 27.95 %. Multivariate logistic regression analysis revealed that 3D mean CT value, lobulation, and margin characteristics independently predicted stageⅠinvasive lung adenocarcinoma. The combination of three indicators significantly improved prediction accuracy (AUC=0.881).</p></div><div><h3>Conclusion</h3><p>The utilization of 3D visualization technology in a systematic approach enables the acquisition of 3D quantitative parameters and morphological indicators of thin-slice CT lesions. These efforts significantly contribute to the identification of histopathological subtypes for stageⅠinvasive lung adenocarcinoma. When integrated with pertinent clinical data, this offers essential guidance for developing various surgical techniques and treatment plans.</p></div>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352047724000558/pdfft?md5=6ba180c2567cfc76febca8a162b97b4b&pid=1-s2.0-S2352047724000558-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352047724000558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

This study aims to analyze the quantitative parameters and morphological indices of three-dimensional (3D) visualization to differentiate lepidic predominant adenocarcinoma (LPA) from non-LPA subtypes, which include acinar predominant adenocarcinoma (APA), papillary predominant adenocarcinoma (PPA), micropapillary predominant adenocarcinoma (MPA), and solid predominant adenocarcinoma (SPA).

Methods

A group of 178 individuals diagnosed with lung adenocarcinoma were chosen and categorized into two groups: the LPA group and the non-LPA group, according to their pathological results. Quantitative parameters and morphological indexes such as 3D volume, solid proportion, and vascular cluster sign were obtained using 3D visualization and reconstruction techniques.

Results

Significant differences were observed in the vascular cluster sign, spiculation, shape, air bronchogram, bubble-like lucency, margin, pleural indentation, lobulation, maximum tumor diameter, 3D mean CT value, 3D volume, 3D mass, 3D density, and solid proportion between two groups (P<0.05). The optimal cut-off values for diagnosing non-LPA were a 3D mean CT value of −445.45 HU, a 3D density of 0.56 mg·mm−3, and a solid proportion reaching 27.95 %. Multivariate logistic regression analysis revealed that 3D mean CT value, lobulation, and margin characteristics independently predicted stageⅠinvasive lung adenocarcinoma. The combination of three indicators significantly improved prediction accuracy (AUC=0.881).

Conclusion

The utilization of 3D visualization technology in a systematic approach enables the acquisition of 3D quantitative parameters and morphological indicators of thin-slice CT lesions. These efforts significantly contribute to the identification of histopathological subtypes for stageⅠinvasive lung adenocarcinoma. When integrated with pertinent clinical data, this offers essential guidance for developing various surgical techniques and treatment plans.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非增强 CT 三维成像在区分Ⅰ期浸润性肺腺癌(LPA)和非 LPA 中的价值
目的 本研究旨在分析三维(3D)可视化的定量参数和形态学指标,以区分鳞状占位腺癌(LPA)和非LPA亚型,非LPA亚型包括针状占位腺癌(APA)、乳头状占位腺癌(PPA)、微乳头状占位腺癌(MPA)和实变占位腺癌(SPA)。方法 选择 178 例确诊为肺腺癌的患者,根据病理结果将其分为两组:LPA 组和非 LPA 组。结果两组患者的血管团征、棘点、形态、气管图、气泡样通明、边缘、胸膜压痕、分叶、肿瘤最大直径、三维平均 CT 值、三维体积、三维质量、三维密度、实性比例等定量参数和形态学指标差异显著(P<0.05)。诊断非 LPA 的最佳临界值为三维 CT 平均值为 -445.45 HU、三维密度为 0.56 mg-mm-3、实性比例达到 27.95 %。多变量逻辑回归分析显示,三维平均 CT 值、分叶和边缘特征可独立预测Ⅰ期浸润性肺腺癌。结论通过系统地利用三维可视化技术,可获得薄层 CT 病灶的三维定量参数和形态学指标。这些工作大大有助于确定Ⅰ期浸润性肺腺癌的组织病理学亚型。结合相关临床数据,这为制定各种手术技术和治疗方案提供了重要指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Radiology Open
European Journal of Radiology Open Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
4.10
自引率
5.00%
发文量
55
审稿时长
51 days
期刊最新文献
Deep learning model for diagnosis of thyroid nodules with size less than 1 cm: A multicenter, retrospective study MRI-based radiomics machine learning model to differentiate non-clear cell renal cell carcinoma from benign renal tumors Post-deployment performance of a deep learning algorithm for normal and abnormal chest X-ray classification: A study at visa screening centers in the United Arab Emirates Study on the classification of benign and malignant breast lesions using a multi-sequence breast MRI fusion radiomics and deep learning model True cost estimation of common imaging procedures for cost-effectiveness analysis - insights from a Singapore hospital emergency department
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1