Huanhuan Li , Wenbin Xing , Hang Jiao , Kum Fai Yuen , Ruobin Gao , Yan Li , Christian Matthews , Zaili Yang
{"title":"Bi-directional information fusion-driven deep network for ship trajectory prediction in intelligent transportation systems","authors":"Huanhuan Li , Wenbin Xing , Hang Jiao , Kum Fai Yuen , Ruobin Gao , Yan Li , Christian Matthews , Zaili Yang","doi":"10.1016/j.tre.2024.103770","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate ship trajectory prediction (STP) is crucial to realise the early warning of ship collision and ensure maritime safety. Driven by advancements in artificial intelligence technology, deep learning-based STP has become a predominant approach in the research field of ship collision avoidance. This paper, based on a state-of-the-art survey of the existing STP research progress, aims to develop a new bi-directional information fusion-driven prediction model that enables the achievement of more accurate STP results by addressing the drawbacks of the classical methods in the field. In this context, a cascading network model is developed by combining two bi-directional networks in a specific order. It incorporates the Bi-directional Long Short-Term Memory (BiLSTM) and the Bi-directional Gated Recurrent Unit (BiGRU) neural network into a single three-layer, information-enhanced network. It takes advantage of both networks to realise more accurate prediction of ship trajectories. Furthermore, the performance of the proposed model is comprehensively evaluated using Automatic Identification System (AIS) data from three water areas representing traffic scenarios of different safety concerns. The superiority of the proposed model is verified through comparative analysis with twenty other methods, including the state-of-the-art STP in the literature. The finding reveals that the new model is better than all the benchmarked ones, and thus, the new STP solution in this paper makes new contributions to improving autonomous navigation and maritime safety.</p></div>","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"192 ","pages":"Article 103770"},"PeriodicalIF":8.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1366554524003612/pdfft?md5=7123f266937889ccc68a9c35a8910502&pid=1-s2.0-S1366554524003612-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1366554524003612","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate ship trajectory prediction (STP) is crucial to realise the early warning of ship collision and ensure maritime safety. Driven by advancements in artificial intelligence technology, deep learning-based STP has become a predominant approach in the research field of ship collision avoidance. This paper, based on a state-of-the-art survey of the existing STP research progress, aims to develop a new bi-directional information fusion-driven prediction model that enables the achievement of more accurate STP results by addressing the drawbacks of the classical methods in the field. In this context, a cascading network model is developed by combining two bi-directional networks in a specific order. It incorporates the Bi-directional Long Short-Term Memory (BiLSTM) and the Bi-directional Gated Recurrent Unit (BiGRU) neural network into a single three-layer, information-enhanced network. It takes advantage of both networks to realise more accurate prediction of ship trajectories. Furthermore, the performance of the proposed model is comprehensively evaluated using Automatic Identification System (AIS) data from three water areas representing traffic scenarios of different safety concerns. The superiority of the proposed model is verified through comparative analysis with twenty other methods, including the state-of-the-art STP in the literature. The finding reveals that the new model is better than all the benchmarked ones, and thus, the new STP solution in this paper makes new contributions to improving autonomous navigation and maritime safety.
期刊介绍:
Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management.
Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.