Bokinala Moses Abraham, Mullapudi V. Jyothirmai, Priyanka Sinha, Francesc Viñes, Jayant K. Singh, Francesc Illas
{"title":"Catalysis in the digital age: Unlocking the power of data with machine learning","authors":"Bokinala Moses Abraham, Mullapudi V. Jyothirmai, Priyanka Sinha, Francesc Viñes, Jayant K. Singh, Francesc Illas","doi":"10.1002/wcms.1730","DOIUrl":null,"url":null,"abstract":"<p>The design and discovery of new and improved catalysts are driving forces for accelerating scientific and technological innovations in the fields of energy conversion, environmental remediation, and chemical industry. Recently, the use of machine learning (ML) in combination with experimental and/or theoretical data has emerged as a powerful tool for identifying optimal catalysts for various applications. This review focuses on how ML algorithms can be used in computational catalysis and materials science to gain a deeper understanding of the relationships between materials properties and their stability, activity, and selectivity. The development of scientific data repositories, data mining techniques, and ML tools that can navigate structural optimization problems are highlighted, leading to the discovery of highly efficient catalysts for a sustainable future. Several data-driven ML models commonly used in catalysis research and their diverse applications in reaction prediction are discussed. The key challenges and limitations of using ML in catalysis research are presented, which arise from the catalyst's intrinsic complex nature. Finally, we conclude by summarizing the potential future directions in the area of ML-guided catalyst development.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"14 5","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1730","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1730","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The design and discovery of new and improved catalysts are driving forces for accelerating scientific and technological innovations in the fields of energy conversion, environmental remediation, and chemical industry. Recently, the use of machine learning (ML) in combination with experimental and/or theoretical data has emerged as a powerful tool for identifying optimal catalysts for various applications. This review focuses on how ML algorithms can be used in computational catalysis and materials science to gain a deeper understanding of the relationships between materials properties and their stability, activity, and selectivity. The development of scientific data repositories, data mining techniques, and ML tools that can navigate structural optimization problems are highlighted, leading to the discovery of highly efficient catalysts for a sustainable future. Several data-driven ML models commonly used in catalysis research and their diverse applications in reaction prediction are discussed. The key challenges and limitations of using ML in catalysis research are presented, which arise from the catalyst's intrinsic complex nature. Finally, we conclude by summarizing the potential future directions in the area of ML-guided catalyst development.
设计和发现新型改良催化剂是加速能源转换、环境修复和化学工业领域科技创新的驱动力。最近,机器学习(ML)与实验和/或理论数据的结合使用已成为为各种应用确定最佳催化剂的有力工具。本综述重点介绍如何在计算催化和材料科学中使用 ML 算法,以深入了解材料特性与其稳定性、活性和选择性之间的关系。文章重点介绍了科学数据资源库、数据挖掘技术以及可解决结构优化问题的 ML 工具的发展情况,从而为可持续发展的未来发现高效催化剂。讨论了催化研究中常用的几种数据驱动的 ML 模型及其在反应预测中的各种应用。介绍了催化研究中使用 ML 所面临的主要挑战和局限性,这些挑战和局限性源于催化剂固有的复杂性。最后,我们总结了以 ML 为指导的催化剂开发领域未来的潜在发展方向:
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.