Cooling from aerosol–radiation interaction of anthropogenic coarse particles in China

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES npj Climate and Atmospheric Science Pub Date : 2024-09-20 DOI:10.1038/s41612-024-00773-4
Xuan Wang, Shixian Zhai, Lu Shen
{"title":"Cooling from aerosol–radiation interaction of anthropogenic coarse particles in China","authors":"Xuan Wang, Shixian Zhai, Lu Shen","doi":"10.1038/s41612-024-00773-4","DOIUrl":null,"url":null,"abstract":"Climate assessments have largely overlooked the radiative effect of anthropogenic coarse particulate matter (PMcoarse, with an aerodynamic diameter between 2.5 and 10 µm) in China. Despite its similar mass concentration to fine particulate matter (PM2.5), anthropogenic sources of PMcoarse in China have been much less studied and typically underrepresented in models. Here, we present a new model simulation for PMcoarse in China that incorporates various anthropogenic sources. The model successfully captures the magnitude and distribution of observed PMcoarse and recently available aerosol optical depth measurements at near-infrared wavelengths, which are substantially underestimated if anthropogenic PMcoarse is not included. We find that anthropogenic PMcoarse exerts a cooling effect of -0.11 Wm−2 (-0.03 to -0.42 Wm−2) in China by aerosol–radiation interaction, capable of completely offsetting the warming effect from black carbon by 2060 under Dynamic Projection model for Emissions in China (DPEC) 1.1 scenario. We conclude that the radiative effect due to anthropogenic PMcoarse will likely dampen the warming penalty caused by the emission reduction of other aerosols in China and should be incorporated into climate models.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-9"},"PeriodicalIF":8.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00773-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00773-4","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Climate assessments have largely overlooked the radiative effect of anthropogenic coarse particulate matter (PMcoarse, with an aerodynamic diameter between 2.5 and 10 µm) in China. Despite its similar mass concentration to fine particulate matter (PM2.5), anthropogenic sources of PMcoarse in China have been much less studied and typically underrepresented in models. Here, we present a new model simulation for PMcoarse in China that incorporates various anthropogenic sources. The model successfully captures the magnitude and distribution of observed PMcoarse and recently available aerosol optical depth measurements at near-infrared wavelengths, which are substantially underestimated if anthropogenic PMcoarse is not included. We find that anthropogenic PMcoarse exerts a cooling effect of -0.11 Wm−2 (-0.03 to -0.42 Wm−2) in China by aerosol–radiation interaction, capable of completely offsetting the warming effect from black carbon by 2060 under Dynamic Projection model for Emissions in China (DPEC) 1.1 scenario. We conclude that the radiative effect due to anthropogenic PMcoarse will likely dampen the warming penalty caused by the emission reduction of other aerosols in China and should be incorporated into climate models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国人为粗颗粒物气溶胶-辐射相互作用产生的降温效应
气候评估在很大程度上忽视了中国人为粗颗粒物(PMcoarse,空气动力学直径在 2.5 到 10 µm 之间)的辐射效应。尽管粗颗粒物的质量浓度与细颗粒物(PM2.5)相似,但中国人为粗颗粒物来源的研究要少得多,而且通常在模型中代表性不足。在此,我们介绍了一种新的中国可吸入颗粒物模拟模型,其中纳入了各种人为来源。该模型成功捕捉到了近红外波段观测到的可吸入颗粒物的大小和分布,以及最近可用的气溶胶光学深度测量结果。我们发现,人为可吸入颗粒物通过气溶胶-辐射相互作用在中国产生了-0.11 Wm-2(-0.03 至-0.42 Wm-2)的冷却效应,在中国排放动态预测模型(DPEC)1.1情景下,到2060年能够完全抵消黑碳产生的升温效应。我们的结论是,人为可吸入颗粒物造成的辐射效应可能会抑制中国其他气溶胶减排造成的变暖惩罚,因此应将其纳入气候模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
期刊最新文献
Mortality burden of diabetes attributable to high temperature and heatwave under climate change scenarios in China Impact of fuel sulfur regulations on carbonaceous particle emission from a marine engine A new global carbon flux estimation methodology by assimilation of both in situ and satellite CO2 observations Dominance of open burning signatures in PM2.5 near coal plant should redefine pollutant priorities of India Climate model trend errors are evident in seasonal forecasts at short leads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1