Lei Ge , Jue Li , Ziyang Lin , Xinqiang Zhang , Yongsheng Yao , Gang Cheng , Yifa Jiang
{"title":"Risk substance identification of asphalt VOCs integrating machine learning and network pharmacology","authors":"Lei Ge , Jue Li , Ziyang Lin , Xinqiang Zhang , Yongsheng Yao , Gang Cheng , Yifa Jiang","doi":"10.1016/j.trd.2024.104434","DOIUrl":null,"url":null,"abstract":"<div><p>Asphalt releases volatile organic compounds (VOCs) during paving processes, posing risks to workers and the environment. The complex composition of asphalt and the evolving of VOCs present challenges in accurately assessing their potential environmental and health impacts using traditional experimental approaches. This study aimed to develop a robust computational framework integrating machine learning and network pharmacology to predict the risks from the asphalt VOCs. The results show that the MACCS+XGBoost model achieved the highest predictive performance, with an accuracy of 0.85, balanced accuracy of 0.84, sensitivity of 0.83, specificity of 0.84, and F1-score of 0.84 in the external validation. The network pharmacology analysis revealed that the identified VOCs with reproductive toxicity potential may disrupt key processes such as spermatogenesis, ovarian function, and hormonal regulation, providing mechanistic insights into their potential impacts. This advancement supports a proactive approach to environmental protection and fosters the transition towards a more sustainable, low-carbon transportation.</p></div>","PeriodicalId":23277,"journal":{"name":"Transportation Research Part D-transport and Environment","volume":"136 ","pages":"Article 104434"},"PeriodicalIF":7.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part D-transport and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361920924003912","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
Asphalt releases volatile organic compounds (VOCs) during paving processes, posing risks to workers and the environment. The complex composition of asphalt and the evolving of VOCs present challenges in accurately assessing their potential environmental and health impacts using traditional experimental approaches. This study aimed to develop a robust computational framework integrating machine learning and network pharmacology to predict the risks from the asphalt VOCs. The results show that the MACCS+XGBoost model achieved the highest predictive performance, with an accuracy of 0.85, balanced accuracy of 0.84, sensitivity of 0.83, specificity of 0.84, and F1-score of 0.84 in the external validation. The network pharmacology analysis revealed that the identified VOCs with reproductive toxicity potential may disrupt key processes such as spermatogenesis, ovarian function, and hormonal regulation, providing mechanistic insights into their potential impacts. This advancement supports a proactive approach to environmental protection and fosters the transition towards a more sustainable, low-carbon transportation.
期刊介绍:
Transportation Research Part D: Transport and Environment focuses on original research exploring the environmental impacts of transportation, policy responses to these impacts, and their implications for transportation system design, planning, and management. The journal comprehensively covers the interaction between transportation and the environment, ranging from local effects on specific geographical areas to global implications such as natural resource depletion and atmospheric pollution.
We welcome research papers across all transportation modes, including maritime, air, and land transportation, assessing their environmental impacts broadly. Papers addressing both mobile aspects and transportation infrastructure are considered. The journal prioritizes empirical findings and policy responses of regulatory, planning, technical, or fiscal nature. Articles are policy-driven, accessible, and applicable to readers from diverse disciplines, emphasizing relevance and practicality. We encourage interdisciplinary submissions and welcome contributions from economically developing and advanced countries alike, reflecting our international orientation.