Jordi Hernández-Contreras , Jordi Roig-Rubio , Margarita Parra , Salvador Gil , Pau Arroyo , José A. Sáez , Carlos Lodeiro , Pablo Gaviña
{"title":"Green and real-time detection of GHB in soft drinks and alcoholic beverages using an eco-friendly cellulose paper-based fluorescent probe","authors":"Jordi Hernández-Contreras , Jordi Roig-Rubio , Margarita Parra , Salvador Gil , Pau Arroyo , José A. Sáez , Carlos Lodeiro , Pablo Gaviña","doi":"10.1016/j.sbsr.2024.100691","DOIUrl":null,"url":null,"abstract":"<div><p>Chemical submission, a nefarious tactic increasingly employed in criminal activities, has spurred urgent calls for innovative countermeasures. GHB, often dubbed “liquid ecstasy,” stands out as a favoured agent for its surreptitious nature and seamless solubility in water and alcoholic beverages. Addressing this menace head-on, a groundbreaking study delves into the development of advanced chemosensors, leveraging 2-aminonaphtoxazole- and benzoxazole-based compounds adorned with fluorescein, to construct a cellulose paper-based detection system. This ingenious setup not only detects GHB in water but extends its vigilance to real alcoholic and non-alcoholic beverages, illuminating a pathway to thwart potential assailants. With a fluorescence enhancement mechanism at play, the system boasts a dynamic range from 0 to 125 mM GHB in water, exhibiting a commendable limit of detection (LOD) at 7.3 mM. Crucially, its eco-friendly nature, devoid of solvent residuals, underscores its suitability as a proactive shield against chemical submission, embodying a beacon of hope in the fight against such insidious threats to public safety.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100691"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000734/pdfft?md5=e389b99fa02c13e205c630790ec87504&pid=1-s2.0-S2214180424000734-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical submission, a nefarious tactic increasingly employed in criminal activities, has spurred urgent calls for innovative countermeasures. GHB, often dubbed “liquid ecstasy,” stands out as a favoured agent for its surreptitious nature and seamless solubility in water and alcoholic beverages. Addressing this menace head-on, a groundbreaking study delves into the development of advanced chemosensors, leveraging 2-aminonaphtoxazole- and benzoxazole-based compounds adorned with fluorescein, to construct a cellulose paper-based detection system. This ingenious setup not only detects GHB in water but extends its vigilance to real alcoholic and non-alcoholic beverages, illuminating a pathway to thwart potential assailants. With a fluorescence enhancement mechanism at play, the system boasts a dynamic range from 0 to 125 mM GHB in water, exhibiting a commendable limit of detection (LOD) at 7.3 mM. Crucially, its eco-friendly nature, devoid of solvent residuals, underscores its suitability as a proactive shield against chemical submission, embodying a beacon of hope in the fight against such insidious threats to public safety.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.