Dual redox centers in MnCo2O4 nanorod cathode for highly efficient capacitive deionization

IF 8.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL Desalination Pub Date : 2024-09-20 DOI:10.1016/j.desal.2024.118137
{"title":"Dual redox centers in MnCo2O4 nanorod cathode for highly efficient capacitive deionization","authors":"","doi":"10.1016/j.desal.2024.118137","DOIUrl":null,"url":null,"abstract":"<div><p>Capacitive deionization (CDI) technology via faradic electrodes with active redox pairs has achieved tremendous success in desalination. However, the inner collaborative mechanisms of multi-redox centers in electrodes are rarely deep-analyzed. Thus, this work intensively investigated the inner enhanced mechanisms of multi-redox centers, starting from the dual-redox-based MnCo<sub>2</sub>O<sub>4</sub> nanorod (MCO-NR) cathode in capacitive desalination. The electrochemical tests indicated a surface capacitive ratio of MCO-NR as high as 86 % when the scan rate was 100 mV s<sup>−1</sup>. Multi-dimensional CDI tests demonstrated that the highest capacity of MCO-NR could reach 61.78 mg g<sup>−1</sup>, with four theory models elaborating the electrosorption kinetics and maximum desalination capability. The refined ex-situ XPS measurements, carefully designed comparative experiments, and DFT calculations were used to analyze the Na<sup>+</sup> (de)intercalation characteristics, the inner enhanced electrosorption mechanisms of dual redox centers, and the effects that the Mn redox center exerts on the MnCo<sub>2</sub>O<sub>4</sub> structure. These results showed the superiority of dual- or multi-redox-center-based faradic capacitive desalination, providing a new perspective for designing high-property faradic electrode materials.</p></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424008488","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Capacitive deionization (CDI) technology via faradic electrodes with active redox pairs has achieved tremendous success in desalination. However, the inner collaborative mechanisms of multi-redox centers in electrodes are rarely deep-analyzed. Thus, this work intensively investigated the inner enhanced mechanisms of multi-redox centers, starting from the dual-redox-based MnCo2O4 nanorod (MCO-NR) cathode in capacitive desalination. The electrochemical tests indicated a surface capacitive ratio of MCO-NR as high as 86 % when the scan rate was 100 mV s−1. Multi-dimensional CDI tests demonstrated that the highest capacity of MCO-NR could reach 61.78 mg g−1, with four theory models elaborating the electrosorption kinetics and maximum desalination capability. The refined ex-situ XPS measurements, carefully designed comparative experiments, and DFT calculations were used to analyze the Na+ (de)intercalation characteristics, the inner enhanced electrosorption mechanisms of dual redox centers, and the effects that the Mn redox center exerts on the MnCo2O4 structure. These results showed the superiority of dual- or multi-redox-center-based faradic capacitive desalination, providing a new perspective for designing high-property faradic electrode materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MnCo2O4 纳米棒阴极中的双氧化还原中心可实现高效电容式去离子
通过具有活性氧化还原对的法拉第电极实现的电容式去离子(CDI)技术在海水淡化领域取得了巨大成功。然而,人们很少对电极中多氧化还原中心的内部协同机制进行深入分析。因此,本研究从电容式海水淡化中基于双氧化还原的 MnCo2O4 纳米棒(MCO-NR)阴极入手,深入研究了多氧化还原中心的内在增强机制。电化学测试表明,当扫描速率为 100 mV s-1 时,MCO-NR 的表面电容比高达 86%。多维 CDI 测试表明,MCO-NR 的最高容量可达 61.78 mg g-1,并有四个理论模型阐述了电吸附动力学和最大脱盐能力。通过精细的原位 XPS 测量、精心设计的对比实验和 DFT 计算,分析了 Na+(脱)插特性、双氧化还原中心的内部增强电吸附机制以及 Mn 氧化还原中心对 MnCo2O4 结构的影响。这些结果表明了基于双氧化还原中心或多氧化还原中心的法拉第电容脱盐的优越性,为设计高特性法拉第电极材料提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Desalination
Desalination 工程技术-工程:化工
CiteScore
14.60
自引率
20.20%
发文量
619
审稿时长
41 days
期刊介绍: Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area. The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes. By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.
期刊最新文献
Dual redox centers in MnCo2O4 nanorod cathode for highly efficient capacitive deionization Preparation of two-dimensional pine pollen derived carbon sheets by rapid microwave carbonization for efficient MCDI desalination Steering interlayer interaction of lithium-aluminum layered double hydroxide beads for stable lithium extraction from sulfate-type brines Ligand extension of aluminum fumarate metal-organic framework in transferring higher water for adsorption desalination Experimental and numerical simulation study on the mass transfer characteristics of static flash evaporation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1