Investigating Nano-Sized Tumor-Derived Extracellular Vesicles in Enhancing Anti-PD-1 Immunotherapy

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-09-20 DOI:10.1039/d4nr00729h
Hesam Abouali, Michelle Przedborski, Mohammad Kohandel, Mahla Poudineh
{"title":"Investigating Nano-Sized Tumor-Derived Extracellular Vesicles in Enhancing Anti-PD-1 Immunotherapy","authors":"Hesam Abouali, Michelle Przedborski, Mohammad Kohandel, Mahla Poudineh","doi":"10.1039/d4nr00729h","DOIUrl":null,"url":null,"abstract":"Anti-PD1 immune checkpoint blockade (ICB) has shown promising results for treating several aggressive cancers, enhancing patient survival rates. The variability in clinical response to anti-PD1 ICB is thought to be driven by patient-specific biology and heterogeneity within the tumor microenvironment. Tumor-derived extracellular vesicles (TDEVs), nano-sized particles released from tumor cells, can modulate the tumor microenvironment, leading to immunosuppression and tumor progression. Hence, TDEVs may contribute to the variability in treatment response and play a crucial role in the failure of anti-PD1 immunotherapy. In this study, we develop a systems biology approach to interrogate the role of TDEVs on the response dynamics for anti-PD1 blockade. Our results suggest that the detection and profiling of TDEVs can help screen patients for anti-PD-1 immunotherapy. Moreover, the results in this study suggest that TDEVs and IL-12 can potentially be liquid biopsy biomarkers to profile patient response to anti-PD1 ICB and tailor patient-specific treatment protocols.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr00729h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Anti-PD1 immune checkpoint blockade (ICB) has shown promising results for treating several aggressive cancers, enhancing patient survival rates. The variability in clinical response to anti-PD1 ICB is thought to be driven by patient-specific biology and heterogeneity within the tumor microenvironment. Tumor-derived extracellular vesicles (TDEVs), nano-sized particles released from tumor cells, can modulate the tumor microenvironment, leading to immunosuppression and tumor progression. Hence, TDEVs may contribute to the variability in treatment response and play a crucial role in the failure of anti-PD1 immunotherapy. In this study, we develop a systems biology approach to interrogate the role of TDEVs on the response dynamics for anti-PD1 blockade. Our results suggest that the detection and profiling of TDEVs can help screen patients for anti-PD-1 immunotherapy. Moreover, the results in this study suggest that TDEVs and IL-12 can potentially be liquid biopsy biomarkers to profile patient response to anti-PD1 ICB and tailor patient-specific treatment protocols.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
The assessment of the importance and catalytic role of chromium oxide and chromium carbide for hydrogen generation via hydrolysis of Magnesium Investigating Nano-Sized Tumor-Derived Extracellular Vesicles in Enhancing Anti-PD-1 Immunotherapy Metal-Organic Framework-Based Ion Selection Membranes for Salt Lake Brines and Seawater Unveiling Magnetic Transition-Driven Thermal Conductivity Switching in Semiconducting Monolayer VS2 Unveiling efficient S-scheme charge carrier transfer in hierarchical BiOBr/TiO2 heterojunction photocatalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1