Metal-Organic Framework-Based Ion Selection Membranes for Salt Lake Brines and Seawater

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-09-20 DOI:10.1039/d4nr02454k
Lirong Li, Biyuan Liu, Zhigang Li
{"title":"Metal-Organic Framework-Based Ion Selection Membranes for Salt Lake Brines and Seawater","authors":"Lirong Li, Biyuan Liu, Zhigang Li","doi":"10.1039/d4nr02454k","DOIUrl":null,"url":null,"abstract":"Nanofiltration (NF) technologies have evolved into a stage ready for industrial commercialization. NF membranes with unique separation characteristics are widely used for ion selection in water environment. Although many materials have been synthesized and functionalized for specific ion separation, the permeability-selectivity trade-off is still a major challenge. Metal-organic frameworks (MOFs), as a class of promising materials to meet industrial demands, are gaining increasing attention. Many experimental and numerical studies have been conducted on the applications of MOF-based membranes in ion selection. This review focuses on MOF-based NF membranes for ion separation/selection from seawater and salt lake brines, including their applications in industry. First, a brief discussion on the development of membrane technology in ion selection is given, with the principles of ion separation via NF membranes, industrial implementations, and the technical difficulty being discussed. Then, the benefits and challenges using MOF membranes in NF processes are elaborated, including the basic properties of MOFs, approaches to fabricate MOF membranes for efficient ion selection and the challenges for constructing industrially viable membranes. Finally, the state-of-the-art studies on key characteristics of MOFs toward NF membranes are presented. It indicates that there is significant potential for the utilization of MOF-based membranes to improve the ion separation performance. However, the lack of sufficient data under industrial conditions highlights the need for further development in this area.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr02454k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofiltration (NF) technologies have evolved into a stage ready for industrial commercialization. NF membranes with unique separation characteristics are widely used for ion selection in water environment. Although many materials have been synthesized and functionalized for specific ion separation, the permeability-selectivity trade-off is still a major challenge. Metal-organic frameworks (MOFs), as a class of promising materials to meet industrial demands, are gaining increasing attention. Many experimental and numerical studies have been conducted on the applications of MOF-based membranes in ion selection. This review focuses on MOF-based NF membranes for ion separation/selection from seawater and salt lake brines, including their applications in industry. First, a brief discussion on the development of membrane technology in ion selection is given, with the principles of ion separation via NF membranes, industrial implementations, and the technical difficulty being discussed. Then, the benefits and challenges using MOF membranes in NF processes are elaborated, including the basic properties of MOFs, approaches to fabricate MOF membranes for efficient ion selection and the challenges for constructing industrially viable membranes. Finally, the state-of-the-art studies on key characteristics of MOFs toward NF membranes are presented. It indicates that there is significant potential for the utilization of MOF-based membranes to improve the ion separation performance. However, the lack of sufficient data under industrial conditions highlights the need for further development in this area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
The assessment of the importance and catalytic role of chromium oxide and chromium carbide for hydrogen generation via hydrolysis of Magnesium Investigating Nano-Sized Tumor-Derived Extracellular Vesicles in Enhancing Anti-PD-1 Immunotherapy Metal-Organic Framework-Based Ion Selection Membranes for Salt Lake Brines and Seawater Unveiling Magnetic Transition-Driven Thermal Conductivity Switching in Semiconducting Monolayer VS2 Unveiling efficient S-scheme charge carrier transfer in hierarchical BiOBr/TiO2 heterojunction photocatalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1