Scalable Low-Temperature CO2 Electrolysis: Current Status and Outlook

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY JACS Au Pub Date : 2024-08-24 DOI:10.1021/jacsau.4c0058310.1021/jacsau.4c00583
Hojeong Lee, Seontaek Kwon, Namgyoo Park, Sun Gwan Cha, Eunyoung Lee, Tae-Hoon Kong, Jihoo Cha and Youngkook Kwon*, 
{"title":"Scalable Low-Temperature CO2 Electrolysis: Current Status and Outlook","authors":"Hojeong Lee,&nbsp;Seontaek Kwon,&nbsp;Namgyoo Park,&nbsp;Sun Gwan Cha,&nbsp;Eunyoung Lee,&nbsp;Tae-Hoon Kong,&nbsp;Jihoo Cha and Youngkook Kwon*,&nbsp;","doi":"10.1021/jacsau.4c0058310.1021/jacsau.4c00583","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical CO<sub>2</sub> reduction (eCO<sub>2</sub>R) in membrane electrode assemblies (MEAs) has brought e-chemical production one step closer to commercialization because of its advantages of minimized ohmic resistance and stackability. However, the current performance of reported eCO<sub>2</sub>R in MEAs is still far below the threshold for economic feasibility where low overall cell voltage (&lt;2 V) and extensive stability (&gt;5 years) are required. Furthermore, while the production cost of e-chemicals heavily relies on the carbon capture and product separation processes, these areas have received much less attention compared to CO<sub>2</sub> electrolysis, itself. In this perspective, we examine the current status of eCO<sub>2</sub>R technologies from both academic and industrial points of view. We highlight the gap between current capabilities and commercialization standards and offer future research directions for eCO<sub>2</sub>R technologies with the hope of achieving industrially viable e-chemical production.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 9","pages":"3383–3399 3383–3399"},"PeriodicalIF":8.5000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00583","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical CO2 reduction (eCO2R) in membrane electrode assemblies (MEAs) has brought e-chemical production one step closer to commercialization because of its advantages of minimized ohmic resistance and stackability. However, the current performance of reported eCO2R in MEAs is still far below the threshold for economic feasibility where low overall cell voltage (<2 V) and extensive stability (>5 years) are required. Furthermore, while the production cost of e-chemicals heavily relies on the carbon capture and product separation processes, these areas have received much less attention compared to CO2 electrolysis, itself. In this perspective, we examine the current status of eCO2R technologies from both academic and industrial points of view. We highlight the gap between current capabilities and commercialization standards and offer future research directions for eCO2R technologies with the hope of achieving industrially viable e-chemical production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可扩展的低温二氧化碳电解:现状与展望
膜电极组件(MEAs)中的电化学二氧化碳还原(eCO2R)因其欧姆电阻最小化和可堆叠性等优势,使电子化学品生产离商业化更近了一步。然而,目前报道的 MEA 中的 eCO2R 性能仍远低于经济可行性的门槛,因为需要较低的电池总电压(<2 V)和较高的稳定性(>5 年)。此外,虽然电子化学品的生产成本在很大程度上取决于碳捕获和产品分离过程,但与二氧化碳电解本身相比,这些领域受到的关注要少得多。在这一视角中,我们从学术和工业角度考察了 eCO2R 技术的现状。我们强调了当前能力与商业化标准之间的差距,并为 eCO2R 技术提供了未来的研究方向,希望能实现工业上可行的电子化学品生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Issue Editorial Masthead Issue Publication Information Revealing the Ultrafast Energy Transfer Pathways in Energetic Materials: Time-Dependent and Quantum State-Resolved Mechanistic Insights into Nonadiabatic Interband Transitions on a Semiconductor Surface Induced by Hydrogen Atom Collisions Sequence-Encoded Spatiotemporal Dependence of Viscoelasticity of Protein Condensates Using Computational Microrheology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1