Revealing the Ultrafast Energy Transfer Pathways in Energetic Materials: Time-Dependent and Quantum State-Resolved

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY JACS Au Pub Date : 2024-11-13 DOI:10.1021/jacsau.4c0077510.1021/jacsau.4c00775
Jia Liu, Jitai Yang, Gangbei Zhu, Jiarui Li, You Li, Yu Zhai, Huajie Song*, Yanqiang Yang* and Hui Li*, 
{"title":"Revealing the Ultrafast Energy Transfer Pathways in Energetic Materials: Time-Dependent and Quantum State-Resolved","authors":"Jia Liu,&nbsp;Jitai Yang,&nbsp;Gangbei Zhu,&nbsp;Jiarui Li,&nbsp;You Li,&nbsp;Yu Zhai,&nbsp;Huajie Song*,&nbsp;Yanqiang Yang* and Hui Li*,&nbsp;","doi":"10.1021/jacsau.4c0077510.1021/jacsau.4c00775","DOIUrl":null,"url":null,"abstract":"<p >Intramolecular vibrational energy transfer is gaining tremendous attention as a regulator of condensed-phase behavior and reactions. In polyatomic molecules, this transfer is an ultrafast process involving multiple modes with numerous quantum states. The inherent complexity and rapid evolution of these processes pose significant challenges to experimental observation, and the high computational costs make full quantum mechanical calculations impractical with current technology. In the intramolecular energy transfer process, whether the doorway modes are intermediaries for transferring energy from lattice phonons to high-frequency intramolecular vibrational modes has been a controversial issue. However, the broad range of doorway modes complicates the experimental identification of a specific doorway in the transfer process corresponding to a specific end point. Here, for the first time, we utilize a combination of vibrational projection, statistical analysis, and the local quantum vibrational embedding (LQVE) method to elucidate the ultrafast energy transfer pathways that upconvert energy from lattice phonons to intramolecular modes in the typical energetic material β-HMX. This approach enables us to resolve the coupled vibrational mode groups, identify the most probable energy transfer pathways corresponding to the different final modes, and clearly confirm that the doorway region is a mandatory pathway for energy transfer. The LQVE method’s time-dependent and quantum state-resolved advantages are leveraged to reveal the microscopic mechanism of the energy transfer process. The time scale of these processes is determined at about 1 ps, and the first theoretical two-dimensional infrared spectroscopy evidence is provided, which is confirmed by the experimental results. These findings deliver important insights into the fundamental mechanisms of ultrafast energy transfer in energetic materials, providing theoretical support for controlling explosive behavior and designing new explosives. The methodologies developed in this work can be extended to other condensed phase materials and used to evaluate the coupling between multiple vibrational modes.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 11","pages":"4455–4465 4455–4465"},"PeriodicalIF":8.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00775","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Intramolecular vibrational energy transfer is gaining tremendous attention as a regulator of condensed-phase behavior and reactions. In polyatomic molecules, this transfer is an ultrafast process involving multiple modes with numerous quantum states. The inherent complexity and rapid evolution of these processes pose significant challenges to experimental observation, and the high computational costs make full quantum mechanical calculations impractical with current technology. In the intramolecular energy transfer process, whether the doorway modes are intermediaries for transferring energy from lattice phonons to high-frequency intramolecular vibrational modes has been a controversial issue. However, the broad range of doorway modes complicates the experimental identification of a specific doorway in the transfer process corresponding to a specific end point. Here, for the first time, we utilize a combination of vibrational projection, statistical analysis, and the local quantum vibrational embedding (LQVE) method to elucidate the ultrafast energy transfer pathways that upconvert energy from lattice phonons to intramolecular modes in the typical energetic material β-HMX. This approach enables us to resolve the coupled vibrational mode groups, identify the most probable energy transfer pathways corresponding to the different final modes, and clearly confirm that the doorway region is a mandatory pathway for energy transfer. The LQVE method’s time-dependent and quantum state-resolved advantages are leveraged to reveal the microscopic mechanism of the energy transfer process. The time scale of these processes is determined at about 1 ps, and the first theoretical two-dimensional infrared spectroscopy evidence is provided, which is confirmed by the experimental results. These findings deliver important insights into the fundamental mechanisms of ultrafast energy transfer in energetic materials, providing theoretical support for controlling explosive behavior and designing new explosives. The methodologies developed in this work can be extended to other condensed phase materials and used to evaluate the coupling between multiple vibrational modes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示高能材料中的超快能量转移途径:时间依赖性和量子态分辨
分子内振动能量转移作为凝聚相行为和反应的调节器,正受到越来越多的关注。在多原子分子中,这种能量转移是一个超快过程,涉及多种量子态的多种模式。这些过程固有的复杂性和快速演变给实验观测带来了巨大挑战,而高昂的计算成本又使得完全量子力学计算在现有技术条件下变得不切实际。在分子内能量传递过程中,门道模式是否是将能量从晶格声子传递到高频分子内振动模式的中介一直是一个有争议的问题。然而,由于门道模态的范围很广,因此在实验中识别转移过程中与特定终点相对应的特定门道就变得复杂了。在这里,我们首次结合振动投影、统计分析和局部量子振动嵌入(LQVE)方法,阐明了典型高能材料 β-HMX 中能量从晶格声子上转换到分子内模式的超快能量转移途径。这种方法使我们能够解析耦合振动模式群,确定与不同最终模式相对应的最可能的能量转移途径,并清楚地确认门廊区是能量转移的必经之路。利用 LQVE 方法的时间依赖性和量子态分辨优势,揭示了能量传递过程的微观机制。这些过程的时间尺度被确定为约 1 ps,并首次提供了理论上的二维红外光谱证据,这也得到了实验结果的证实。这些发现提供了对高能材料超快能量传递基本机制的重要见解,为控制爆炸行为和设计新型炸药提供了理论支持。这项工作中开发的方法可扩展到其他凝聚相材料,并用于评估多种振动模式之间的耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Issue Editorial Masthead Issue Publication Information Revealing the Ultrafast Energy Transfer Pathways in Energetic Materials: Time-Dependent and Quantum State-Resolved Mechanistic Insights into Nonadiabatic Interband Transitions on a Semiconductor Surface Induced by Hydrogen Atom Collisions Sequence-Encoded Spatiotemporal Dependence of Viscoelasticity of Protein Condensates Using Computational Microrheology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1