Interfacial Anion-Induced Dispersion of Active Species for Efficient Electrochemical Baeyer–Villiger Oxidation

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY JACS Au Pub Date : 2024-09-05 DOI:10.1021/jacsau.4c0058510.1021/jacsau.4c00585
Shuangshuang Cha, Yuxin Chen, Wei Du, Jianxiang Wu, Ran Wang, Tao Jiang, Xuejing Yang, Cheng Lian*, Honglai Liu and Ming Gong*, 
{"title":"Interfacial Anion-Induced Dispersion of Active Species for Efficient Electrochemical Baeyer–Villiger Oxidation","authors":"Shuangshuang Cha,&nbsp;Yuxin Chen,&nbsp;Wei Du,&nbsp;Jianxiang Wu,&nbsp;Ran Wang,&nbsp;Tao Jiang,&nbsp;Xuejing Yang,&nbsp;Cheng Lian*,&nbsp;Honglai Liu and Ming Gong*,&nbsp;","doi":"10.1021/jacsau.4c0058510.1021/jacsau.4c00585","DOIUrl":null,"url":null,"abstract":"<p >Degradable polymers are an effective solution for white plastic pollution. Polycaprolactone is a type of degradable plastic with desirable mechanical and biocompatible properties, and its monomer, ε-caprolactone (ε-CL), is often synthesized by Baeyer–Villiger (B–V) oxidation that demands peroxyacids with low safety and low atom-efficiency. Herein, we devised an electrochemical B–V oxidation system simply driven by H<sub>2</sub>O<sub>2</sub> for the efficient production of ε-CL. This system involves two steps with the direct oxidation of H<sub>2</sub>O<sub>2</sub> into •OOH radicals at the electrode surface and the indirect oxidation of cyclohexanone by the generated reactive oxygen species. The modulation of the interfacial ionic environment by amphipathic sulfonimide anions [e.g., bis(trifluoromethane)sulfonimide (TFSI<sup>–</sup>)] is highly critical. It enables the efficient B–V oxidation into ε-caprolactone with ∼100% selectivity and 68.4% yield at a potential of 1.28 V vs RHE, much lower than the potentials applied for electrochemical B–V oxidation systems using water as the O sources. On hydrophilic electrodes with the action of sulfonimide anions, hydrophilic H<sub>2</sub>O<sub>2</sub> can be enriched within the double layer for direct oxidation while hydrophobic cyclohexanone can be simultaneously accumulated for rapidly reacting with the reactive oxygen species. This work not only enriches the electrified method of the ancient B–V oxidation by using only H<sub>2</sub>O<sub>2</sub> toward monomer production of biodegradable plastics but also emphasizes the critical role of the interfacial ionic environment for electrosynthesis systems that may extend the scope of activity optimization.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 9","pages":"3629–3640 3629–3640"},"PeriodicalIF":8.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00585","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Degradable polymers are an effective solution for white plastic pollution. Polycaprolactone is a type of degradable plastic with desirable mechanical and biocompatible properties, and its monomer, ε-caprolactone (ε-CL), is often synthesized by Baeyer–Villiger (B–V) oxidation that demands peroxyacids with low safety and low atom-efficiency. Herein, we devised an electrochemical B–V oxidation system simply driven by H2O2 for the efficient production of ε-CL. This system involves two steps with the direct oxidation of H2O2 into •OOH radicals at the electrode surface and the indirect oxidation of cyclohexanone by the generated reactive oxygen species. The modulation of the interfacial ionic environment by amphipathic sulfonimide anions [e.g., bis(trifluoromethane)sulfonimide (TFSI)] is highly critical. It enables the efficient B–V oxidation into ε-caprolactone with ∼100% selectivity and 68.4% yield at a potential of 1.28 V vs RHE, much lower than the potentials applied for electrochemical B–V oxidation systems using water as the O sources. On hydrophilic electrodes with the action of sulfonimide anions, hydrophilic H2O2 can be enriched within the double layer for direct oxidation while hydrophobic cyclohexanone can be simultaneously accumulated for rapidly reacting with the reactive oxygen species. This work not only enriches the electrified method of the ancient B–V oxidation by using only H2O2 toward monomer production of biodegradable plastics but also emphasizes the critical role of the interfacial ionic environment for electrosynthesis systems that may extend the scope of activity optimization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
界面阴离子诱导的活性物种分散,实现高效的电化学拜尔-维利格氧化作用
可降解聚合物是解决白色塑料污染的有效方法。聚己内酯是一种具有理想机械性能和生物相容性的可降解塑料,其单体ε-己内酯(ε-CL)通常通过拜耳-维利格(B-V)氧化法合成,这种方法需要安全性低、原子效率低的过氧酸。在此,我们设计了一种仅由 H2O2 驱动的电化学 B-V 氧化系统,用于高效生产 ε-CL。该系统包括两个步骤:H2O2 在电极表面直接氧化成 -OOH 自由基;生成的活性氧间接氧化环己酮。两性磺酰亚胺阴离子[如双(三氟甲烷)磺酰亚胺(TFSI-)]对界面离子环境的调节非常关键。它能使 B-V 高效氧化成 ε-己内酯,在 1.28 V 电位对 RHE 的条件下,选择性为 100%,产率为 68.4%,远低于使用水作为 O 源的电化学 B-V 氧化系统的电位。在磺酰亚胺阴离子作用下的亲水性电极上,亲水性 H2O2 可以富集在双电层内直接氧化,而疏水性环己酮可以同时富集,与活性氧迅速反应。这项工作不仅丰富了仅使用 H2O2 的古老 B-V 氧化法的电化方法,促进了生物降解塑料单体的生产,而且强调了界面离子环境对电合成系统的关键作用,从而扩大了活性优化的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Issue Editorial Masthead Issue Publication Information Revealing the Ultrafast Energy Transfer Pathways in Energetic Materials: Time-Dependent and Quantum State-Resolved Mechanistic Insights into Nonadiabatic Interband Transitions on a Semiconductor Surface Induced by Hydrogen Atom Collisions Sequence-Encoded Spatiotemporal Dependence of Viscoelasticity of Protein Condensates Using Computational Microrheology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1