Reconstruction of LiF-Rich Interfaces through a Lithium Formate Additive for Anode-Free Lithium Metal Batteries

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-09-06 DOI:10.1021/acsaem.4c0151010.1021/acsaem.4c01510
Jin Ren, Shuhao Zhang, Min Niu, Yueyao Dong, Lu Liang, Shengtao Zhang, Li Li Zhao, Liwei Dong*, Chunhui Yang and Jia-Yan Liang*, 
{"title":"Reconstruction of LiF-Rich Interfaces through a Lithium Formate Additive for Anode-Free Lithium Metal Batteries","authors":"Jin Ren,&nbsp;Shuhao Zhang,&nbsp;Min Niu,&nbsp;Yueyao Dong,&nbsp;Lu Liang,&nbsp;Shengtao Zhang,&nbsp;Li Li Zhao,&nbsp;Liwei Dong*,&nbsp;Chunhui Yang and Jia-Yan Liang*,&nbsp;","doi":"10.1021/acsaem.4c0151010.1021/acsaem.4c01510","DOIUrl":null,"url":null,"abstract":"<p >Anode-free lithium metal batteries (AFLMBs) offer high energy density and enhanced safety due to no excess lithium (Li) in the anode. Nevertheless, Li dendrite growth and dead Li formation rapidly consume the limited active Li in AFLMBs, resulting in a low Coulombic efficiency (CE) and accelerated battery capacity deterioration. Herein, a Li reservoir is established by incorporating lithium formate (CHLiO<sub>2</sub>) into both the cathode and anode as a Li salt additive for interface reconstruction, which improves the cycling stability of AFLMBs. Density functional theory calculation confirms that CHLiO<sub>2</sub> exhibits relatively lower lowest unoccupied molecule orbital (LUMO) energies and higher highest occupied molecular orbital (HOMO) energies compared to the carbonate electrolyte solvents. The integration of CHLiO<sub>2</sub> significantly promotes the reconstruction of LiF-rich interfaces and effectively prevents continuous electrolyte decomposition, which contributes to uniform Li deposition and suppresses active Li consumption. After the introduction of the CHLiO<sub>2</sub> additive, the Cu||NCM811 cell retains an average CE of 97.3% during 40 cycles. This study provides a simple yet effective methodology to supply an extra Li source and reconstruct LiF-rich interfaces for extending the cycling life of AFLMBs.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c01510","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Anode-free lithium metal batteries (AFLMBs) offer high energy density and enhanced safety due to no excess lithium (Li) in the anode. Nevertheless, Li dendrite growth and dead Li formation rapidly consume the limited active Li in AFLMBs, resulting in a low Coulombic efficiency (CE) and accelerated battery capacity deterioration. Herein, a Li reservoir is established by incorporating lithium formate (CHLiO2) into both the cathode and anode as a Li salt additive for interface reconstruction, which improves the cycling stability of AFLMBs. Density functional theory calculation confirms that CHLiO2 exhibits relatively lower lowest unoccupied molecule orbital (LUMO) energies and higher highest occupied molecular orbital (HOMO) energies compared to the carbonate electrolyte solvents. The integration of CHLiO2 significantly promotes the reconstruction of LiF-rich interfaces and effectively prevents continuous electrolyte decomposition, which contributes to uniform Li deposition and suppresses active Li consumption. After the introduction of the CHLiO2 additive, the Cu||NCM811 cell retains an average CE of 97.3% during 40 cycles. This study provides a simple yet effective methodology to supply an extra Li source and reconstruct LiF-rich interfaces for extending the cycling life of AFLMBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过一种用于无阳极金属锂电池的甲酸锂添加剂重构富含 LiF 的界面
无负极锂金属电池(AFLMB)由于负极中没有多余的锂(Li),因此能量密度高,安全性更高。然而,锂枝晶的生长和死锂的形成会迅速消耗无负极锂金属电池中有限的活性锂,导致库仑效率(CE)降低和电池容量加速衰减。本文通过在正负极中加入甲酸锂(CHLiO2)作为锂盐添加剂来重建界面,从而建立了锂储层,提高了 AFLMB 的循环稳定性。密度泛函理论计算证实,与碳酸盐电解质溶剂相比,CHLiO2 表现出相对较低的最低未占分子轨道(LUMO)能量和较高的最高已占分子轨道(HOMO)能量。CHLiO2 的加入大大促进了富含 LiF 界面的重建,并有效阻止了电解质的持续分解,从而有助于锂的均匀沉积并抑制活性锂的消耗。引入 CHLiO2 添加剂后,Cu||NCM811 电池在 40 个循环期间的平均 CE 值保持在 97.3%。这项研究提供了一种简单而有效的方法来提供额外的锂源,并重建富含锂的界面,从而延长 AFLMB 的循环寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Low-Grade Chronic Inflammation: a Shared Mechanism for Chronic Diseases. Predictors of Inflammation-Mediated Preterm Birth. Factors Contributing to Heat Tolerance in Humans and Experimental Models. Harnessing Deep Learning Methods for Voltage-Gated Ion Channel Drug Discovery. Role of RANKL Signaling in Bone Homeostasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1