When in-memory computing meets spiking neural networks—A perspective on device-circuit-system-and-algorithm co-design

IF 11.9 1区 物理与天体物理 Q1 PHYSICS, APPLIED Applied physics reviews Pub Date : 2024-09-23 DOI:10.1063/5.0211040
Abhishek Moitra, Abhiroop Bhattacharjee, Yuhang Li, Youngeun Kim, Priyadarshini Panda
{"title":"When in-memory computing meets spiking neural networks—A perspective on device-circuit-system-and-algorithm co-design","authors":"Abhishek Moitra, Abhiroop Bhattacharjee, Yuhang Li, Youngeun Kim, Priyadarshini Panda","doi":"10.1063/5.0211040","DOIUrl":null,"url":null,"abstract":"This review explores the intersection of bio-plausible artificial intelligence in the form of spiking neural networks (SNNs) with the analog in-memory computing (IMC) domain, highlighting their collective potential for low-power edge computing environments. Through detailed investigation at the device, circuit, and system levels, we highlight the pivotal synergies between SNNs and IMC architectures. Additionally, we emphasize the critical need for comprehensive system-level analyses, considering the inter-dependencies among algorithms, devices, circuit, and system parameters, crucial for optimal performance. An in-depth analysis leads to the identification of key system-level bottlenecks arising from device limitations, which can be addressed using SNN-specific algorithm–hardware co-design techniques. This review underscores the imperative for holistic device to system design-space co-exploration, highlighting the critical aspects of hardware and algorithm research endeavors for low-power neuromorphic solutions.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"14 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0211040","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This review explores the intersection of bio-plausible artificial intelligence in the form of spiking neural networks (SNNs) with the analog in-memory computing (IMC) domain, highlighting their collective potential for low-power edge computing environments. Through detailed investigation at the device, circuit, and system levels, we highlight the pivotal synergies between SNNs and IMC architectures. Additionally, we emphasize the critical need for comprehensive system-level analyses, considering the inter-dependencies among algorithms, devices, circuit, and system parameters, crucial for optimal performance. An in-depth analysis leads to the identification of key system-level bottlenecks arising from device limitations, which can be addressed using SNN-specific algorithm–hardware co-design techniques. This review underscores the imperative for holistic device to system design-space co-exploration, highlighting the critical aspects of hardware and algorithm research endeavors for low-power neuromorphic solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
当内存计算遇到尖峰神经网络--从设备-电路-系统-算法协同设计的角度看问题
这篇综述探讨了以尖峰神经网络(SNN)为形式的仿生人工智能与模拟内存计算(IMC)领域的交叉点,强调了它们在低功耗边缘计算环境中的共同潜力。通过对设备、电路和系统层面的详细研究,我们强调了尖峰神经网络与 IMC 架构之间的关键协同作用。此外,我们还强调了全面系统级分析的关键需求,考虑了算法、设备、电路和系统参数之间的相互依存关系,这对实现最佳性能至关重要。通过深入分析,我们可以识别出器件限制所导致的关键系统级瓶颈,而这些瓶颈可以利用针对 SNN 的算法-硬件协同设计技术加以解决。本综述强调了从器件到系统设计空间的整体共同探索的必要性,突出了低功耗神经形态解决方案的硬件和算法研究工作的关键方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
期刊最新文献
Physical and electrical properties of silica Scaling up of photocatalytic systems for large-scale hydrogen generation Integrated functions of microfluidics and gravimetric sensing enabled by piezoelectric driven microstructures Structural and optoelectronic characterization of anisotropic two-dimensional materials and applications in polarization-sensitive photodetectors InGaN-based blue and red micro-LEDs: Impact of carrier localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1